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Abstract

The spectral properties of functions and operators provide key insights into their structure,

and form the basis for state-of-the-art computational methods for simulation, learning, and in-

ference. By providing a fast transform between physical and frequency spaces, the fast Fourier

transform revolutionized applications across computational mathematics. However, there remain

many settings in which spectral methods cannot be efficiently applied because the geometric or

analytic structure of the problem is not directly amenable to the fast Fourier transform. Motivated

by parameter estimation and sampling problems in spatial statistics and uncertainty quantifica-

tion, we develop numerical methods in three such settings.

First, we discuss an adaptive integrationmethod for computing continuous Fourier transforms

of singular functions which is accelerated by existing nonuniform fast Fourier transform algo-

rithms. Next, we develop a nonuniform fast Hankel transform for computing Fourier transforms

of radially symmetric functions in higher dimensions. Finally, we present a manifold harmonic

transform for performing Fourier analysis on arbitrary smooth manifolds by leveraging a mul-

tilevel low-rank approximation known as a butterfly factorization. In each case, we show how

these fast transforms yield scalable methods for Gaussian random fields, and we briefly comment

on other applications including imaging, graphics, and numerical partial differential equations.
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1 | Introduction

The fast Fourier transform (FFT) [28, 33] has revolutionized a wide range of applications

acrossmathematics, statistics, and the physical sciences by accelerating the computation of Fourier

sums between equispaced points and integer frequencies. In the last thirty years, nonuniform fast

Fourier transform (NUFFT) algorithms [34, 51] have been developed to extend the scalability of

the FFT to Fourier sums involving nonuniform points and frequencies. The FFT and NUFFT have

had a particularly strong impact on spatiotemporal statistics, where they are central components

in a wide variety of scalable algorithms for estimation, sampling, and regression [32, 39, 40, 54,

92, 116] . However, the FFT and NUFFT grew out of a need to perform discrete Fourier analysis

in Cartesian coordinates, and can not be directly and efficiently applied in certain statistical set-

tings due to the analytical or geometric structure of the problem. In this dissertation, we develop

quadrature schemes and novel fast transforms for three such settings, focusing on applications

to parameter estimation and sampling of Gaussian random fields (GRFs).

1.1 Gaussian random fields and spectral density functions

GRF models are ubiquitous in many statistical settings. They provide a flexible method of in-

terpolating noisy data by estimating and incorporating dependence structure between measure-

ments, and they yield model-implied second-order information that can be used for uncertainty

quantification. A GRF 𝑍 is defined by a mean function 𝜇 (𝒙) = E𝑍 (𝒙) and a positive definite
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covariance function

Cov
(
𝑍 (𝒙), 𝑍 (𝒙′)

)
= 𝐾𝜽 (𝒙, 𝒙′), (1.1)

where 𝐾𝜽 is some parametric family of positive definite covariance functions indexed by pa-

rameters 𝜽 . Consider observing 𝑍 at locations 𝒙1, ..., 𝒙𝑛 ∈ R𝑑 corresponding to measurements

𝑧𝑖 := 𝑍 (𝒙𝑖). Then the vector of observations 𝒛 := [𝑧1, ..., 𝑧𝑛] ∈ R𝑛 is normally distributed as

𝒛 ∼ 𝑁
(
𝝁,Σ𝜽

)
, where 𝝁 𝑗 := 𝜇 (𝒙 𝑗 ) and the covariance matrix is given entry-wise by (Σ𝜽 ) 𝑗𝑘 :=

𝐾𝜽 (𝒙 𝑗 , 𝒙𝑘). For the remainder of this dissertation, we will assume that 𝜇 (𝑥) ≡ 0, as estimat-

ing a spatially-varying mean function and subtracting it from the data is typically a relatively

straightforward modeling and computational task. Furthermore, for GRFs defined on R𝑑 , we will

make the additional simplifying assumption that the process 𝑍 is stationary, so that 𝐾𝜽 (𝒙, 𝒙′) =

𝐾𝜽 (𝒙 − 𝒙′) = 𝐾𝜽 (𝒓), which implies that the process 𝑍 is translation-invariant. This is a more se-

vere assumption, which limits the types of dependence structure one can express in exchange for

significant theoretical and computational benefits. We refer readers to [110] for a more detailed

introduction and discussion of GRFs, covariance functions, and stationarity.

Once a parametric family of covariance models has been specified for some dataset 𝒛, practi-

tioners often need to fit the model parameters 𝜽 by, for example, computing a maximum likeli-

hood estimator (MLE) denoted 𝜽 , which minimizes the Gaussian negative log-likelihood

−2ℓ (𝜽 ) := log |Σ𝜽 | + 𝒛⊤Σ−1
𝜽 𝒛 + 𝑛 log(2𝜋). (1.2)

Naturally, evaluating the log-likelihood in this form requires evaluation of𝐾𝜽 in order to construct

Σ𝜽 . If 𝐾𝜽 is available in closed form, this is of course no issue. Common examples of covariance

functions in this category are the isotropic Matérn model 𝐾𝜽 (𝒓) ∝ ∥𝒓 ∥𝜈 K𝜈 (∥𝒓 ∥), where K𝜈 is

the modified second-kind Bessel function [90], and its special cases 𝐾𝜽 (𝒓) ∝ 𝑒−∥𝒓 ∥ for 𝜈 = 1
2 and

𝐾𝜽 (𝒓) ∝ 𝑒−∥𝒓 ∥
2
for 𝜈 → ∞. After the parameters 𝜽 have been estimated, one can then perform

regression, sampling, and other downstream tasks using the distribution specified by the fitted
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parameters.

The specification of the parametric family of covariance functions 𝐾𝜽 is of paramount impor-

tance when employing Gaussian process models, as this family should capture all of the relevant

correlation structure present in the data. Unfortunately, positive definite covariance functions

that can be expressed in closed form are fairly difficult to construct mathematically, and thus few

are known and used in practice. This severely limits the expressiveness of Gaussian process mod-

els available to practitioners, sometimes preventing domain scientists from capturing scientifi-

cally interesting phenomena. For stationary processes, however, one can alternatively construct

valid covariance models by specifying their Fourier transform. Bochner’s theorem [100] states

that

𝐾𝜽 (𝒙 − 𝒙′) =
∫
R𝑑

𝑆𝜽 (𝝎) 𝑒2𝜋𝑖𝝎⊤ (𝒙−𝒙′) d𝝎 . (1.3)

is a positive definite function for any integrable positive function 𝑆𝜽 , which we refer to as a

spectral density. Closed form positive spectral densities are much more easily constructed and

parameterized than positive definite covariance functions. Therefore, from a modeling flexibility

perspective it can be desirable to build and fit models via their spectral representations.

1.2 Existing methods

Due to these appealing aspects of spectral modeling, many computational methods for con-

structing GRF models on R𝑑 in the spectral domain in a variety of special cases exist in the lit-

erature. For gridded data in one or two dimensions, Whittle-type methods [125] approximate

the log-likelihood (1.2) directly from 𝑆𝜽 using an FFT, but may introduce severe bias without

special care [50, 114]. For spatiotemporal processes that are gridded in at least one dimension,

“half-spectral" models have been used to generate flexible kernels [30, 42, 61, 111]. For spectral

densities represented using spline bases at low frequencies and algebraic tails at higher frequen-

cies, [63] evaluates the covariance function 𝐾𝜽 at fully nonuniform locations using the relevant
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special functions.

Another popular class of GRF spectral methods is the “Fourier Features” paradigm, where the

Fourier integral (1.3) is approximated usingMonte Carlo integration [97], the trapezoidal rule [54,

59, 109], or Gaussian quadrature [53, 106]. This yields a global approximation to the covariance

matrix

𝐾𝜽 (𝒙 − 𝒙′) ≈
𝑚∑︁
𝑘=1

𝛾𝑘𝑆𝜽 (𝝎𝑘)𝑒2𝜋𝑖𝝎
⊤
𝒌 (𝒙−𝒙

′) =⇒ Σ𝜽 = ΦDΦ∗, (1.4)

where 𝝎𝑘 and 𝛾𝑘 are quadrature nodes and weights, Φ 𝑗𝑘 := 𝑒2𝜋𝑖𝝎
⊤
𝒌 𝒙 𝑗 is the feature matrix, and

D𝑘𝑘 := 𝛾𝑘𝑆𝜽 (𝝎𝑘). This approach has several advantageous qualities. First, the resulting co-

variance matrix approximation is positive definite by construction. In addition, for sufficiently

smooth processes, 𝑆𝜽 decays rapidly, and thus this representation is low-rank to high accuracy.

The log-likelihood (1.2) can then be efficiently evaluated using Sherman-Morrison-Woodbury

identities. However, a large number of Fourier features are needed to accurately approximate

models whose spectral densities decay very slowly, and thus these approaches can become ex-

pensive when modeling rough processes. We propose an alternative method which is better

suited to the non-smooth regime in Chapters 2 and 3.

For GRFs on compact manifoldsM, specifying any valid covariance functions becomes chal-

lenging. The naïve approach of taking a positive definite function on R𝑑 and replacing Euclidean

distance with geodesic distance does not yield a positive definite function onM [17]. Thus a pop-

ular approach is to model the process𝑍 as the solution to a stochastic partial differential equation

(SPDE) ℒ𝑍 = 𝑊 on M, where ℒ is a differential operator and𝑊 is Gaussian white noise [14,

76]. The SPDE framework can be made computationally efficient using a triangulation of M,

a finite element method (FEM) discretization of ℒ, and common FEM sparse matrix methods,

although one must carefully monitor FEM discretization error [102]. However, this paradigm is

typically limited to processes for which the relevant differential operator can be written in weak

form and discretized using FEM. This limitation has restricted the set of models used in practice,
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just as we noted for covariance-space modeling. It is worth mentioning, however, that significant

progress towards more expressive SPDE models has been made in recent years using polynomial

and rational approximations to the spectrum [14, 15, 70].

In order to construct GRF models on compact manifoldsM in spectral space as we did above

inR𝑑 , one can apply an analogue to Bochner’s theorem onM. Note that the complex exponentials

𝑒2𝜋𝑖𝝎
⊤𝒓 that appear in (1.3) are exactly the eigenfunctions of the Laplacian on R𝑑 . It is therefore

natural to consider an analogous construction using the eigenfunctions of the Laplace-Beltrami

operator on an arbitrary manifolds in place of the complex exponentials. On compact manifolds

M this collection of eigenfunctions is discrete, and thus the integral in (1.3) is replaced by a sum,

and we can express covariances in terms of any positive spectral density 𝑆𝜽 as

𝐾𝜽 (𝒙, 𝒙′) =
∞∑︁
𝑘=1

𝑆𝜽
(
𝜆𝑘

)
𝜑𝑘 (𝒙)𝜑𝑘 (𝒙′) (1.5)

where (𝜆𝑘 , 𝜑𝑘) for 𝑘 = 1, . . . ,∞ are eigenvalues and corresponding eigenfunctions of the Laplace-

Beltrami operator ΔM . Expansions of this type are suggested in [17, 108] as natural generaliza-

tions of the Fourier features paradigm to the manifold setting, but only a small number of features

𝜑𝑘 are used so that the resulting covariances remain low-rank. Similar spectral representations

are used for expositional purposes in [70, 71], although SPDE-based computational tools are then

used.

While the SPDE approach is typically viewed as a means of accelerating computation for

standard covariance models like the Matérn, if one considers the spectrum of the differential

operator ℒ, it can be seen as a version of the spectral modeling paradigm presented above and

in Section 1.1. Consider, for example, the Matérn SPDE

(𝜌2 − Δ) 𝜈
2 +

𝑑
4𝑍 (𝒙) := F −1

{
(𝜌2 + 𝜆𝑘)

𝜈
2 +

𝑑
4 (F𝑍 ) (𝑘)

}
(𝒙) =𝑊 (𝒙), (1.6)
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where the Fourier transform of 𝑍 is defined in a suitable weak sense. We see from this example

that the differential operatorℒ is defined simply from the inverse square root of the correspond-

ing Matérn spectrum 𝑆𝜽 (𝜆) = (𝜌2 + 𝜆)−𝜈−𝑑
2 . This equivalence is not specific to the Matérn, and

we have ℒ𝑓 = F −1
{
𝑆𝜽 (𝜆𝑘)−

1
2 (F 𝑓 ) (𝑘)

}
for any sufficiently smooth 𝑓 and sufficiently regular

𝑆𝜽 . Therefore essentially any GRF that can be expressed as an SPDE can be equivalently repre-

sented by its spectral density, and the difference between the approaches is purely in the choice

of computational tools — weak form SPDEs and FEM discretizations versus spectral densities and

oscillatory discrete transforms. [76, Appendix B.3.2] claims that this spectral definition is not

computationally useful because linear combinations of Laplace-Beltrami eigenfunctions 𝜑𝑘 can-

not be efficiently computed. We introduce a method for accelerating precisely this computation

in Chapter 4.

1.3 Overview of the dissertation

Although specifying GRFs by their spectral densities in these various geometric settings can

significantly increase modeling flexibility, it presents certain computational challenges. In partic-

ular, one must efficiently evaluate (1.3) and its analogues to move from spectral space, in which

the statistical model is defined, to physical space, in which the data are found. The develop-

ment of quadrature schemes and fast algorithms for these purposes is precisely the focus of this

dissertation.

In Chapter 2, we introduce a Gaussian panel quadrature framework for efficiently and accu-

rately evaluating covariance functions and their derivatives at irregular locations in one dimen-

sion directly from any continuous, integrable spectral density 𝑆𝜽 . This method is fully adaptive

and accelerated by the NUFFT.

In Chapter 3, we develop the fast transform necessary to extend the methods of Chapter 2 to

higher dimensions. In particular, when working with an isotropic GRF one has 𝑆𝜽 (𝝎) = 𝑆𝜽 (∥𝝎∥),

6



and the 𝑑-dimensional Fourier integral (1.3) simplifies to a one-dimensional Hankel transform

𝐾𝜽 (𝒓) =
(2𝜋) 𝑑2

𝑟
𝑑
2−1

∫ ∞

0
𝑆𝜽 (𝜔) 𝐽𝑑

2−1
(𝜔𝑟 )𝜔 𝑑

2 d𝜔, (1.7)

where 𝜔 := ∥𝝎∥ and 𝑟 := ∥𝒓 ∥ . We use local and asymptotic expansions of the Bessel function 𝐽𝜈

to develop a nonuniform fast Hankel transform (NUFHT) to evaluate discretized forms of (1.7)

given by

𝑔 𝑗 =

𝑚∑︁
𝑘=1

𝑐𝑘 𝐽𝜈 (𝜔𝑘𝑟 𝑗 ) for 𝑗 = 1, . . . , 𝑛 (1.8)

in O
(
(𝑚 + 𝑛) logmin(𝑛,𝑚)

)
time to any user-specified tolerance 𝜀. We also discuss applications

of the NUFHT beyond statistics to numerical PDE.

In Chapter 4, we propose a manifold harmonic transform (MHT) to accelerate sampling of

GRFs on arbitrary compact manifoldsM by evaluating sums of the form

𝑔 𝑗 =

𝑚∑︁
𝑘=1

𝑐𝑘𝜑𝑘 (𝒙 𝑗 ), for 𝑗 = 1, . . . , 𝑛. (1.9)

We build a compressed representation of the matrix 𝚽 𝑗𝑘 = 𝜑𝑘 (𝒙 𝑗 ) using a multilevel low-rank

factorization for oscillatory operators known as a butterfly factorization [75, 89]. For 2-manifolds

in R3, we numerically demonstrate O(𝑛 +𝑚3/2) asymptotic scaling for this method, and establish

theoretical guarantees which form the foundation for a more rigorous proof of this complexity

in a special case. We briefly mention applications of the butterfly-accelerated manifold harmonic

transform (BA-MHT) to numerical PDE, graphics, and machine learning.
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2 | Fast adaptive Fourier integration

2.1 Introduction

In this chapter, we develop a computational method for computing covariances 𝐾𝜽 (𝑟 ) from

any integrable, positive spectral density 𝑆𝜽 using adaptive Gaussian quadrature. By focusing on

evaluating entries of the covariance matrix Σ𝜽 , we provide a tool for performing maximum like-

lihood estimation from a general spectral density 𝑆𝜽 with fully irregularly sampled data that

is compatible with a variety of subsequent likelihood approximations. We demonstrate that

panel Gaussian integration of the Fourier integral allows the accurate and efficient computa-

tion of covariances 𝐾 (𝑟 ) and their derivatives 𝜕
𝜕𝜃 𝑗
𝐾𝜽 (𝑟 ) from any continuous, integrable spectral

density 𝑆𝜽 . This in turn facilitates gradient-based maximum likelihood estimation directly on

any parameterization of the spectral density. By taking advantage of modern NUFFT and au-

tomatic differentiation (AD) [55] methods, along with careful analysis of the tail behavior of

the spectral density, we can compute 𝐾𝜽 (𝑟 ) and its derivatives with respect to parameters to

𝜀 = 10−12 accuracy even for slowly decaying spectral densities at millions of inter-observation

distances 𝑟 in seconds on a standard laptop. Our free and open source Julia code is available at

https://github.com/pbeckman/SpectralKernels.jl.

While the possibilities for functional forms of spectral densities are endless and themachinery

described here is generally applicable, in this chapterwe study in detail the simple extension given

by incorporating an integrable singularity into a bounded spectral density 𝑆𝜽 (𝜔), resulting in the
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new model |𝜔 |−𝛼𝑆𝜽 (𝜔). Such extensions correspond to “long memory" processes, for which we

derive some theoretical properties, overcome numerical challenges associated with evaluating

their covariance functions, and demonstrate their practical value by fitting a singular model to

Doppler LiDAR wind velocity profiles. For the remainder of this chapter we will often suppress

the dependence of Σ, 𝐾, and 𝑆 on 𝜽 for notational clarity.

2.2 Method

We are concerned here only with real-valued covariance functions 𝐾 , and therefore assume

𝑆 is an even function. This results in the simplification

𝐾 (𝑟 ) = 2
∫ ∞

0
𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) 𝑑𝜔. (2.1)

In order to evaluate 𝐾 (𝑟 ) by directly computing (2.1), one must choose a quadrature rule. As

the spectral density 𝑆 is assumed to be integrable, it must decay sufficiently fast for large 𝜔 , so

that one can truncate the infinite interval [0,∞) at some point 𝑏 and integrate only on the finite

interval [0, 𝑏]. This gives

𝐾 (𝑟 ) ≈ 2
∫ 𝑏

0
𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) 𝑑𝜔 ≈ 2

𝑚∑︁
𝑗=1
𝛾 𝑗𝑆 (𝜔 𝑗 ) cos(2𝜋𝜔 𝑗𝑟 ), (2.2)

where 𝜔 𝑗 and 𝛾 𝑗 are the nodes and weights of the chosen quadrature rule. The simplest choice

of quadrature is the trapezoidal rule, which uses equispaced points 𝜔 𝑗 = ( 𝑗 − 1)ℎ with weights

𝛾1 = 𝛾𝑚 = ℎ
2 and 𝛾 𝑗 = ℎ for 𝑗 = 2, . . . ,𝑚 − 1, where the grid spacing is ℎ := 𝑏

𝑚−1 . The aliasing and

truncation errors when using the trapezoidal rule are treated in detail for the squared exponential

and Matérn models in [2].

For known spectral densities 𝑆 with sufficiently fast decay, this can be a highly accurate

quadrature. However, it has two limitations. First, for more flexible and complex spectral den-
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sities 𝑆 , the analysis used in [2] to choose the grid spacing ℎ necessary to resolve 𝑆 becomes

difficult, and must be done for each new parametric family 𝑆 . Second, for small 𝑟 we may need to

take both a small ℎ to control the quadrature error, as well as a large 𝑏 to control the truncation

error when integrating slowly decaying spectral densities 𝑆 such as the commonly used Matérn

model [110]

𝑆𝜽 (𝜔) = 𝜑2(𝜌2 + 𝜔2)−𝜈− 1
2 , 𝜽 := {𝜑, 𝜌, 𝜈} (2.3)

with small values of the smoothness parameter 𝜈 , e.g. 𝜈 = 1/2. This can result in a number

of quadrature nodes 𝑚 which is prohibitively large from a computational standpoint. In the

remainder of this section, we demonstrate that panel Gaussian integration of the Fourier integral

allows us to overcome both of these limitations.

2.2.1 Panel integration of the Fourier integral

If one wishes to integrate (2.1) for a large range of 𝑟 with uniform accuracy, using a dense

quadrature rule for 𝜔 ∈ [0, 𝑏] for some large 𝑏 might appear to be an unavoidable cost. However,

as we demonstrate numerically in this section and theoretically in Section 2.2.3.2, truncation

error in 𝐾 (𝑟 ) is concentrated near the origin in 𝑟 -space. Intuitively, this is because the high

frequency information contained in the tails of the spectral density 𝑆 has a much greater impact

on covariances between observationswhich are close together. This intuitionwill bemade precise

shortly by Theorem 2.2.

The localization of error near 𝑟 = 0 suggests that we can compute the Fourier integral on

the interval 𝜔 ∈ [0, 𝑏], then iteratively add the contribution of the Fourier integral on successive

intervals in 𝜔-space for only those 𝑟 ’s nearest the origin in 𝑟 -space. We will refer to each interval
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[𝑎, 𝑏] in 𝜔-space as a panel. Define the exact and discretized panel integrals

𝐼 [𝑎,𝑏] (𝑟 ) :=
∫ 𝑏

𝑎

𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) 𝑑𝜔 (2.4)

𝐼
(𝑚)
[𝑎,𝑏] (𝑟 ) :=

𝑚∑︁
𝑗=1
𝛾 𝑗𝑆 (𝜔 𝑗 ) cos(2𝜋𝜔 𝑗𝑟 ) (2.5)

where 𝜔 𝑗 and 𝛾 𝑗 are nodes and weights of an𝑚-point quadrature rule on [𝑎, 𝑏]. The error

𝐸
(𝑚)
[𝑎,𝑏] (𝑟 ) :=

���𝐼 [𝑎,𝑏] (𝑟 ) − 𝐼 (𝑚)
[𝑎,𝑏] (𝑟 )

��� (2.6)

in the𝑚-point trapezoidal rule is only order O(𝑚−2) when the integrand is non-periodic, as is the

case in this panel integral setting. However, the𝑚-point Gauss-Legendre rule, which integrates

polynomials of degree 2𝑚 − 1 exactly, is generally much more accurate for smooth, non-periodic

functions. In particular, for 𝑓 ∈ C (𝑠) ( [𝑎, 𝑏]) with mild additional smoothness assumptions, an

𝑚-order Gauss-Legendre quadrature rule will have error of order O(𝑚−2𝑠−1) [118, Theorem 19.4].

Gauss-Legendre quadrature is thus amenable to panel integration and adaptivity, which allows us

to accurately discretize Fourier integrals for any continuous, integrable spectral density. Adaptive

quadrature will be treated in greater detail in Section 2.2.3.1.

By the Nyquist-Shannon sampling theorem, one requires at least𝑚 = 2𝑟 · (𝑏 − 𝑎) values to

completely determine a function 𝑓 (𝜔) on the interval 𝜔 ∈ [𝑎, 𝑏] if it has bandlimit 𝑟 , that is, if

F {𝑓 }(𝑡) ≡ 0 for all |𝑡 | > 𝑟 . Therefore, for a desired accuracy 𝛿 , a given𝑚, and sufficiently smooth

𝑆 , we expect an O(𝑚)-node Gauss-Legendre rule to compute the Fourier integral with integrand

𝑓 (𝜔) = 𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) to within accuracy 𝛿 on any interval of length 𝑏 − 𝑎 = 𝑚
2𝑟 . We use this

heuristic to choose the next panel [𝑎, 𝑏] in 𝜔-space, where 𝑟 is taken to be the largest distance

for which 𝐾 (𝑟 ) has not yet converged. Then all 𝑟 ′ < 𝑟 result in less oscillatory integrands, which

are therefore also accurately resolved by the𝑚-point rule.

It is worth noting that this Nyquist-informed heuristic for panel selection is not tight in either
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direction. If 𝑆 contains sharp features, then the integrand 𝑓 (𝜔) = 𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) will not have

bandlimit 𝑟 , and thus more quadrature nodes may be required to achieve the desired accuracy

𝛿 . Conversely, if 𝑆 is very smooth, then the effect of aliasing may be below the desired accuracy

𝛿 , and thus fewer quadrature nodes may still yield a adequately accurate result despite not fully

resolving the integrand. However, for sufficiently large𝑚 we find that this Nyquist-based choice

typically computes the Fourier integral to double precision with neither significant redundant

oversampling nor the need for further refinement where 𝑆 is smooth.

The novelty and efficiency of our approach stems from the two related mechanisms discussed

above. First, we can reduce the number of 𝑟 values to be computed after adding each panel Fourier

integral, as the largest 𝑟 ’s have converged. This reduces the number of points 𝑛 at which we must

evaluate the sum (2.5). Second, because cos(2𝜋𝜔𝑟 ) is less oscillatory in 𝜔 for smaller 𝑟 , as the

largest 𝑟 ’s converge we can take increasingly large panels while keeping the number of oscil-

lations per panels constant. Therefore we use the same 𝑚-point quadrature rule to accurately

resolve the integrand. This can significantly reduce the total number of quadrature nodes used to

evaluate the Fourier integral when compared to a more uniform quadrature scheme. Figure 2.1

provides a visual example of this panel growth as𝐾 (𝑟 ) is resolved for the largest 𝑟 ’s which reduces

the highest remaining Nyquist frequency. In particular, note that the spacing between quadra-

ture nodes increases by almost two orders of magnitude between the first and fourth panels,

corresponding to a proportional reduction in computational effort relative to using, for exam-

ple, the trapezoidal rule to integrate the same interval in 𝜔-space. This trend only continues as

we progress in 𝜔-space, adaptively generating a highly non-uniform quadrature rule with in-

creasingly sparse nodes as 𝜔 increases. The resulting quadrature provides orders-of-magnitude

speedups over alternatives, as we demonstrate in Section 2.3.5.

Computing the sum (2.5) directly for 𝑛 distances with an𝑚-point quadrature rule has O(𝑛𝑚)

complexity for each panel. This ostensibly introduces a major tension in the computation of

these panel integrals: higher-order quadrature rules enable larger panels and faster convergence,
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Figure 2.1: Panel integration of a Matérn spectral density with 𝜈 = 1
2 , 𝜌 = 1, and 𝜑 chosen so that 𝐾 (0) =

1. The top row shows various panels of the spectral density being integrated, and each corresponding plot
in the bottom row shows the absolute truncation error in the kernel after the panel integral above has
been added. A small subset of the quadrature nodes are shown in each panel. A tolerance of 𝜀 = 10−8 and
𝑚 = 5,000 nodes per panel are used.

but particularly for large data sizes they lead to enormously burdensome computations if done

directly. In this next section, we discuss how the NUFFT can be used to relieve this tension by

reducing the cost of each panel integral to O(𝑚 + 𝑛 log𝑛) — a speedup which is imperative to

making Fourier integration computationally tractable.

Remark 2.1. The idea of using the same number of quadrature nodes 𝑚 to discretize Fourier

integrals for which the space-frequency product 𝑟 · (𝑏 − 𝑎) is constant is reminiscent of the com-

plementary low-rank property used in butterfly algorithms [74, 89]. One could view the present

method as a butterfly-like algorithm for which the error control is designed specifically for the

problem of adaptively computing continuous Fourier transforms of slowly decaying functions.

Remark 2.2. While globally low-rank methods like EFGP are of the form

𝚺̃ = 𝚽𝑺𝚽∗, (2.7)
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panel integration yields

𝚺̃ = 𝚽0𝑺0𝚽
∗
0 +𝑨1 ⊙ (𝚽1𝑺1𝚽

∗
1) + · · · +𝑨𝑝 ⊙ (𝚽𝑝𝑺𝑝𝚽∗

𝑝) (2.8)

where ⊙ is the pointwise or Hadamard product, and the matrix 𝑨ℓ ∈ {0, 1}𝑛×𝑛 indicates to which

entries 𝚺 𝑗𝑘 = 𝐾 (𝑥 𝑗 −𝑥𝑘) the contribution of panel ℓ should be added. If 𝑨ℓ ≻ 0 for all ℓ = 1, . . . , 𝑝

then 𝚺̃ ≻ 0, as Hadamard products and linear combinations both preserve positive definiteness.

This is not true in general, and thus our method does not guarantee positive definiteness. How-

ever, because we can obtain very high accuracies, positive definiteness is typically not an issue in

practice. Alternative choices of 𝑨ℓ which are positive definite, for example compactly-supported

functions like those of [123], remain an interesting direction for future research.

2.2.2 Acceleration with the nonuniform fast Fourier transform

As each panel Fourier integral (2.5) is a sumof cosineswith nonuniform frequencies𝜔1, . . . , 𝜔𝑚

evaluated at nonuniform distances 𝑟1, . . . , 𝑟𝑛 , it can be computed as the real part of the exponential

sum

𝑓𝑘 =

𝑚∑︁
𝑗=1
𝛾 𝑗𝑆 (𝜔 𝑗 )𝑒2𝜋𝑖𝜔 𝑗𝑟𝑘 𝑘 = 1, . . . , 𝑛 (2.9)

so that 𝐼 (𝑚)
[𝑎,𝑏] (𝑟𝑘) = Re(𝑓𝑘). Equivalently, the computation of the Fourier integral for each panel

[𝑎, 𝑏] in 𝜔-space at all unconverged distances 𝑟 can be viewed as a matrix-vector product of a

dense 𝑛 ×𝑚 nonuniform discrete Fourier matrix with a vector of𝑚 evaluations of the spectral
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density along with appropriate quadrature weights given by

𝑛 distances





𝑒2𝜋𝑖𝜔1𝑟1 · · · 𝑒2𝜋𝑖𝜔𝑚𝑟1

...
. . .

...

𝑒2𝜋𝑖𝜔1𝑟𝑛 · · · 𝑒2𝜋𝑖𝜔𝑚𝑟𝑛

︸                         ︷︷                         ︸
𝑚 quadrature nodes



𝛾1𝑆 (𝜔1)

...

𝛾𝑚𝑆 (𝜔𝑚)


=



𝑓1

...

𝑓𝑘


. (2.10)

Computing this dense matrix-vector product directly has a cost of O(𝑛𝑚). However, the sum

(2.9) and the matrix-vector product (2.10) are equivalent views of exactly a “type 3” nonuniform

to nonuniform discrete Fourier transform, which can be evaluated to accuracy 𝛿 in O(𝑚+𝑛 log𝑛)

complexity using the NUFFT. Most existing NUFFT algorithms work by convolving the input data

with some “spreading” function, performing an equispaced FFT on a fine grid, and deconvolving

to obtain values at the desired output locations. The development of efficient NUFFT libraries

with tunable accuracy guarantees has been the subject of significant research in the past few

decades. See for example [3, 34, 52].

In the present context of computing pointwise covariances from the spectral density, the im-

proved scaling of the NUFFT when compared to direct summation is essential to facilitating the

use of larger, more accurate quadrature rules to compute the values of each panel integral at a

greater number of distances. The dramatic computational impact of the NUFFT will be studied in

greater detail in Section 2.3.5, where we observe orders of magnitude speedup for practical data

sizes.

Remark 2.3. The number of points𝑚 in each NUFFT can be tuned to improve performance. Gen-

erally, using large NUFFTs helps to amortize setup costs and take advantage of multi-threading.

However, ill-conditioning and round-off errors limit the accuracy of the NUFFT to about 10−9 for

large inputs [3, Remark 9]. So if higher accuracy is needed, smaller NUFFTs must be used at the
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expense of a larger pre-factor.

2.2.3 Error estimation

As we saw in Section 2.2.1, the key idea behind fast panel integration of Fourier integrals is to

use panels of increasing size in 𝜔-space. This is made possible by choosing a working tolerance

𝛿 and sequentially integrating panels in 𝜔-space for only those distances 𝑟 at which 𝐾 (𝑟 ) has not

yet been resolved to within 𝛿 accuracy. Determining when 𝐾 (𝑟 ) is adequately resolved for each

𝑟 requires a careful analysis of multiple sources of error, and naive stopping criteria often result

in the loss of several digits of accuracy in the computed integral.

Recall that for any valid covariance function 𝐾 , one has that 𝐾 (0) ≥ |𝐾 (𝑟 ) | for all 𝑟 > 0. Then

for any set of locations 𝑥1, . . . , 𝑥𝑛 , computing each entry in an approximate covariance matrix

Σ̃𝑖 𝑗 := 𝐾 (𝑥𝑖−𝑥 𝑗 ) such that the pointwise error relative to𝐾 (0) is controlled |𝐾 (𝑟 )−𝐾 (𝑟 ) | /𝐾 (0) <

𝜀 for all 𝑟 , consequently bounds the relative max-norm error in Σ̃

∥Σ − Σ̃∥max

∥Σ∥max
=

max
1≤𝑖, 𝑗≤𝑛

���𝐾 (𝑥𝑖 − 𝑥 𝑗 ) − 𝐾 (𝑥𝑖 − 𝑥 𝑗 )���
𝐾 (0) < 𝜀. (2.11)

By the equivalence of norms, controlling the relative max-norm error also controls the relative

Frobenius and spectral norm errors, up to constants which may depend on 𝑛.

We emphasize that the pointwise error relative to 𝐾 (0) is equivalent to neither the rela-

tive nor the absolute pointwise error in each 𝐾 (𝑟 ). If 𝐾 (𝑟 ) = 10−12, then relative error |𝐾 (𝑟 ) −

𝐾 (𝑟 ) |/|𝐾 (𝑟 ) | < 10−8 would require cancellation in the sum of panel integrals to 20 digits, which

is impossible in general in double precision. Conversely, if 𝐾 (𝑟 ) = 1e12, then absolute error

|𝐾 (𝑟 ) − 𝐾 (𝑟 ) | < 10−8 would require 20 correct digits, which is again impossible in double preci-

sion. These are standard and well-known limitations of adaptive integration in finite precision

arithmetic, and neither bounding the relative nor absolute pointwise error by 𝜀 are necessary

conditions for bounding the resulting error in log-likelihood evaluation by 𝜀.

16



As our final goal is to evaluate the log-likelihood, we argue that controlling relative norm er-

rors in Σ̃ is a relevant metric, as small pointwise errors in Σ will result — at least asymptotically —

in small log-likelihood errors because the log-likelihood is a smooth function of the entries of the

covariance matrix Σ for fixed data 𝒚. However, other choices of error metric are of course possi-

ble, and we emphasize that the connection between pointwise kernel accuracy and the accuracy

of the resulting log-likelihood is not direct. If the true covariance matrix is poorly conditioned,

then the log-likelihood may be computed to significantly fewer than 16 digits of accuracy purely

due to fundamental limitations of double-precision arithmetic, even if every kernel evaluation

is accurate to machine precision. See Section 2.3.2 for a brief numerical study of the impact of

pointwise errors and ill-conditioning on log-likelihood accuracy. Since this chapter is focused

on kernel evaluation, we leave a more thorough error analysis of the Gaussian log-likelihood

to future work. Returning to the problem of error estimation within our method, we note that

there are two sources of error at play which we seek to bound above by 𝛿 — quadrature error and

truncation error — which we now treat individually.

2.2.3.1 Quadrature error

To control the quadrature error, we use a straightforward adaptive approach. As is standard

practice in adaptive integration, we estimate the error in the discretized integral by comparing

the result to that obtained by a higher order quadrature rule. For this purpose we use a 2𝑚-point

Gauss-Legendre rule. The error in the𝑚-point rule on [𝑎, 𝑏] is then approximated as

𝐸
(𝑚)
[𝑎,𝑏] (𝑟 ) :=

���𝐼 (2𝑚)
[𝑎,𝑏] (𝑟 ) − 𝐼

(𝑚)
[𝑎,𝑏] (𝑟 )

��� ≈ ���𝐼 [𝑎,𝑏] (𝑟 ) − 𝐼 (𝑚)
[𝑎,𝑏] (𝑟 )

��� . (2.12)

For a given panel, if 𝐸 (𝑚)
[𝑎,𝑏] (𝑟 ) > 𝛿 for any unconverged distance 𝑟 , we divide [𝑎, 𝑏] in two and

repeat this procedure separately on [𝑎, (𝑎 + 𝑏)/2] and [(𝑎 + 𝑏)/2, 𝑏]. We deem these subpanels

converged when both 𝐸 (𝑚)
[𝑎,(𝑎+𝑏)/2] (𝑟 ) < 𝛿/2 and 𝐸 (𝑚)

[(𝑎+𝑏)/2,𝑏] (𝑟 ) < 𝛿/2, so that the total error on
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[𝑎, 𝑏] remains bounded by 𝛿 for all unconverged 𝑟 ’s. If the error remains large for any 𝑟 in one or

both of these subpanels, we continue this dyadic refinement and proportional tolerance reduc-

tion until we obtain an approximation 𝐼 [𝑎,𝑏] (𝑟 ) as a sum of subpanel integrals such that the total

quadrature error is bounded by 𝛿 . This is again standard practice for adaptive integration, and

can be performed to high accuracy. See for example [49].

2.2.3.2 Truncation error

Controlling the truncation error, given by

𝐸trunc(𝑏, 𝑟 ) :=
∫ ∞

𝑏

𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) 𝑑𝜔, (2.13)

is a more subtle issue. As discussed in Section 2.2.1, we iteratively integrate panels from zero to

infinity in spectral space. The remaining question is how to determine for each 𝑟 when we have

integrated a sufficient interval [0, 𝑏] in spectral space so that |𝐸trunc(𝑏, 𝑟 ) | < 𝛿 and we can cease

adding new panels.

One could check that the contribution of the current panel is less than the tolerance 𝛿 , that

is 𝐼 (𝑚)
[𝑎,𝑏] (𝑟 ) < 𝛿 . This is a necessary but not a sufficient condition for 𝐸trunc(𝑏, 𝑟 ) < 𝛿 . In practice,

for spectral densities which decay exponentially this condition results in a negligible loss of ac-

curacy. However, for spectral densities with slow algebraic decay, terminating integration when

𝐼
(𝑚)
[𝑎,𝑏] (𝑟 ) < 𝛿 may result in errors significantly greater than 𝛿 , as one would be truncating many

panels whose contributions would each be O(𝛿).

Therefore, for better error control, we consider the exponent 𝛽 and constant 𝑐 in the tails

of the spectral density such that 𝑆 (𝜔) ∼ 𝑐𝜔−𝛽 as 𝑟 → ∞. For many spectral densities 𝑐 and 𝛽

can be derived analytically, often by straightforward means. Otherwise, these coefficients can

be estimated using linear least squares in log space. With these values, we can compute the
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truncation error analytically for the resulting power law tail, which gives

|𝐸trunc(𝑏, 𝑟 ) | ≈
����∫ ∞

𝑏

𝑐𝜔−𝛽 cos(2𝜋𝜔𝑟 ) 𝑑𝜔
���� (2.14)

= −𝑐 (2𝜋𝑟 )𝛽−1 Re
(
(−𝑖)𝛽−1Γ(−𝛽 + 1,−2𝜋𝑖𝑏𝑟 )

)
, (2.15)

where Γ(𝑠, 𝑧) :=
∫ ∞
𝑧
𝑡𝑠−1𝑒−𝑡 𝑑𝑡, is the upper incomplete Gamma function [90]. There exist a num-

ber of libraries to numerically evaluate this special function. However, it is helpful to have a

simple, tight, and easily invertible algebraic upper bound on this truncation error. We now de-

rive such a bound as a consequence of the following lemma.

Lemma 2.1. For any 𝑠,𝑦 > 0,

|Γ(−𝑠, 𝑖𝑦) | ≤ min
(
𝑦−𝑠−1,

𝑦−𝑠

𝑠

)
. (2.16)

Proof. Using the integral representation 8.6.4 from [90],

|Γ(−𝑠, 𝑖𝑦) | =
���� (𝑖𝑦)−𝑠𝑒−𝑖𝑦Γ(𝑠 + 1)

∫ ∞

0

𝑡𝑠𝑒−𝑡

𝑡 + 𝑖𝑦 𝑑𝑡
���� (2.17)

≤ 𝑦−𝑠

Γ(𝑠 + 1)

∫ ∞

0

𝑡𝑠𝑒−𝑡

|𝑡 + 𝑖𝑦 | 𝑑𝑡 (2.18)

≤ 𝑦−𝑠

Γ(𝑠 + 1)

∫ ∞

0

𝑡𝑠𝑒−𝑡

𝑦
𝑑𝑡 (2.19)

=
𝑦−𝑠−1

Γ(𝑠 + 1)

∫ ∞

0
𝑡𝑠𝑒−𝑡 𝑑𝑡 (2.20)

= 𝑦−𝑠−1, (2.21)
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where Γ(𝑧) := Γ(0, 𝑧) is the usual gamma function. By a similar argument, we obtain

|Γ(−𝑠, 𝑖𝑦) | ≤ 𝑦−𝑠

Γ(𝑠 + 1)

∫ ∞

0

𝑡𝑠𝑒−𝑡

𝑡
𝑑𝑡 (2.22)

=
𝑦−𝑠

Γ(𝑠 + 1) Γ(𝑠) (2.23)

=
𝑦−𝑠

𝑠
(2.24)

using the fundamental property of the Gamma function Γ(𝑧 + 1) = 𝑧Γ(𝑧). □

The above lemma leads immediately to the following result.

Theorem 2.2. For any 𝛽 > 1 and any 𝑏, 𝑟 > 0,����∫ ∞

𝑏

𝜔−𝛽𝑒−2𝜋𝑖𝜔𝑟 𝑑𝜔

���� ≤ min
(

1
𝛽 − 1

𝑏−𝛽+1,
1

2𝜋𝑟
𝑏−𝛽

)
, (2.25)

where the first term gives a tighter bound when 𝑏𝑟 ≤ 𝛽−1
2𝜋 , and the second term otherwise.

Proof. Taking the change of variables 𝑡 = 2𝜋𝑖𝜔𝑟 , we obtain����∫ ∞

𝑏

𝜔−𝛽𝑒−2𝜋𝑖𝜔𝑟 𝑑𝜔

���� = ����(2𝜋𝑖𝑟 )𝛽−1 ∫ ∞

2𝜋𝑖𝑏𝑟
𝑡𝑑𝑒−𝑡 𝑑𝑡

���� = (2𝜋𝑟 )𝛽−1
��Γ(−𝛽 + 1, 2𝜋𝑖𝑏𝑟 )

��.
Applying Lemma 2.1 gives the desired result. □

This result indicates that when the product 𝑏𝑟 is small (for close together observations or

limited integration domains in spectral space), the truncation error in the Fourier integral be-

haves like the truncation error in the non-oscillatory integral. But when 𝑏𝑟 is large (for far apart

observations or large integration domains in spectral space), the truncation error decays faster

by an additional power of 𝑏, with a constant that decreases for larger 𝑟 . This makes precise the

intuition of Figure 2.1 that for a fixed integration domain, the truncation error for larger distances

𝑟 is lower.
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|Γ(−𝑠, 𝑖𝑦) | , 𝑠 = 1
∫ ∞
𝑏
𝜔−𝛽 cos(2𝜋𝜔𝑟 ) d𝜔, 𝛽 = 2

Figure 2.2: The incomplete Gamma function bound from Lemma 2.1 (left) and corresponding bound on
the power law truncation error given by Theorem 2.2 for various 𝑟 (right).

One can therefore use the analytic formula (2.14) or the simpler algebraic upper bound (2.25)

to control the truncation error. In conjunction with the adaptive integration and quadrature

error estimation described in Section 2.2.3.1, we obtain accurate estimates of the total error in the

computed Fourier integral.

2.2.4 Power law singularities at the origin

Long-memory Gaussian processes can be characterized by having an integrable singularity

in their spectral density 𝑆 at the origin. Such models typically lack closed form expressions for

the resulting kernel 𝐾 , and even when such expressions are available, they are often difficult to

compute numerically. We will focus here on a modification of the Matérn family that we will call

a “singular" Matérn model, which was first proposed in [96] and corresponds to a spectral density

given by

𝑆𝜽 (𝜔) = 𝜑2 |𝜔 |−𝛼 (𝜌2 + 𝜔2)−𝜈− 1
2 , 𝜽 := {𝜑, 𝛼, 𝜌, 𝜈} (2.26)

with 0 ≤ 𝛼 < 1. As will be discussed in detail in the next section, the corresponding covariance

function does technically have a closed form representation, but it is exceptionally challenging

to evaluate numerically.

In contrast, such spectral densities with power law singularities are treated easily by the

21



panel Gaussian quadrature framework presented here. While directly applying a Gauss-Legendre

quadrature to the integral

𝐾 (𝑟 ) = 2
∫ 𝑏

0
𝜔−𝛼𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) 𝑑𝜔 (2.27)

results in low accuracy, Gauss-Jacobi quadratures are designed specifically to treat the singularity

𝜔−𝛼 accurately, and can be computed quickly and accurately [47, 57]. Simply using a Gauss-Jacobi

rule on the first panel followed by Gauss-Legendre rules on all remaining panels allows accurate

computation of singular Fourier integrals of this form. For panels that do not contain the origin,

the 𝜔−𝛼 term may safely be included in the Fourier integrand, and the standard Gauss-Legendre

rule gives high accuracy.

2.2.5 Computing derivatives of the kernel

In order to take advantage of gradient-based optimizers for maximum likelihood estimation,

one must compute derivatives 𝜕
𝜕𝜃 𝑗
𝐾 (𝑟 ). Assuming that the parametric family 𝑆𝜽 is sufficiently

well-behaved as to allow exchanging differentiation and integration, we have

𝜕𝐾𝜽 (𝑟 )
𝜕𝜃 𝑗

= 2
∫ ∞

0
𝜔−𝛼 𝜕𝑆 (𝜔)

𝜕𝜃 𝑗
cos(2𝜋𝜔𝑟 ) 𝑑𝜔, (2.28)

which can be computed using the same framework that is used to evaluate 𝐾𝜽 itself.

While differentiating even standard covariance functions such as the Matérn with respect to

kernel parameters can be challenging [45], most common spectral densities are very simple to

differentiate. The computation of the partial derivatives 𝜕
𝜕𝜃 𝑗
𝑆𝜽 (𝜔) can be done easily using au-

tomatic differentiation (AD) [55], which operates at the code level to programmatically generate

derivatives of a given function. As a result, end users can simply write any parametric spectral

density 𝑆𝜽 that they would like, and the derivatives of 𝐾𝜽 will be obtained automatically using
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our software.

This ease of differentiation can be extended to singular spectral densities. To compute the

derivative of the kernel 𝐾 with respect to the singularity parameter 𝛼 , given by

𝜕𝐾 (𝑟 )
𝜕𝛼

= −2
∫ ∞

0
𝜔−𝛼 log(𝜔)𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) 𝑑𝜔, (2.29)

we require a method for accurately integrating the 𝜔−𝛼 log(𝜔) singularity on the panel [0, 𝑏]

containing the origin. Ignoring the log(𝜔) singularity and applying a Gauss-Jacobi rule results in

low accuracy, especially as 𝛼 approaches 1 and the weights become relatively large and positive

near zero. However, if we apply integration by parts

(1 − 𝛼)
∫ 𝑏

0
𝜔−𝛼 log(𝜔)𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) 𝑑𝜔 = 𝑏1−𝛼 log(𝑏)𝑆 (𝑏) cos(2𝜋𝑏𝑟 )

−
∫ 𝑏

0
𝜔−𝛼

(
𝑆 (𝜔) + 𝜔 log(𝜔)𝑆′(𝜔)

)
cos(2𝜋𝜔𝑟 ) 𝑑𝜔 (2.30)

+ 2𝜋𝑟
∫ 𝑏

0
𝜔1−𝛼 log(𝜔)𝑆 (𝜔) sin(2𝜋𝜔𝑟 ) 𝑑𝜔,

we see that the resulting integrals involve only the power law singularity 𝜔−𝛼 , and that the log

singularity has been removed. As 𝑆 is a closed form function provided by the user, 𝑆′(𝜔) can

be obtained analytically or using AD, and we can evaluate the above expression using the same

Gauss-Jacobi rule that is employed to compute kernel values. This requires only two NUFFTs, and

avoids any additional cost to compute specialized quadratures for the𝜔−𝛼 log(𝜔) singularity. For

panels which do not contain the origin, the 𝜔−𝛼 log𝜔 term can be included in the integrand, and

the Gauss-Legendre rule gives high accuracy as before. Using this strategy and incorporating it

into a custom rule for the AD engine again means that this derivative can be obtained entirely

programmatically without any end-user intervention.
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2.3 Numerical results

Before employing the adaptive integration method described above to compute kernel values

in a maximum likelihood estimation context with real data, we provide several demonstrations.

First, we provide numerical experiments with simulated data to validate our error estimation

techniques and illustrate their impact on log-likelihood accuracy. We continue with examples of

statistically interesting models which can be written easily in the spectral domain but for which

no closed form expression exists for the corresponding covariance function. Next, we show that

our method can accurately evaluate the singular Matérn covariance function even when existing

alternative numerical methods fail. We close with a runtime comparison which illustrates that

our adaptive NUFFT-accelerated Gaussian quadrature scheme is necessary to efficiently obtain

high accuracy kernel evaluations.

2.3.1 Error estimation for Matérn model

As a first test to validate the error estimation strategies described in Section 2.2.3, we compare

it to analytical evaluation of the Matérn covariance 𝐾 in the challenging regime 𝜈 = 0.51, where

the spectral density 𝑆 decays slowly. We choose a moderate range parameter 𝜌 = 1 and chose

𝜑 so that 𝐾 (0) = 1. For various tolerances 𝜀, we compute 100 values of 𝐾 (𝑟 ) for 𝑟 ∈ [1e-8, 1],

along with the corresponding error estimate for each 𝑟 , given by the sum of the quadrature and

truncation error estimates discussed in Section 2.2.3. See Figure 2.3. Note that for all tested

tolerances 𝜀, all kernel values are computed to within 𝜀 of the true value. In addition, the error

estimates are generally accurate indicators of the true errors, or at least act as upper bounds,

which is to be expected from the use of the truncation error bound (2.25).
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Figure 2.3: Pointwise errors and error estimates for various tolerances 𝜀 using a Matérn model with
𝜈 = 0.51, 𝜌 = 1, and 𝜑 chosen so that 𝐾 (0) = 1 with𝑚 = 256 quadrature nodes per panel, demonstrating
the sharpness of the error control methods discussed in the previous section.

2.3.2 Relative max-norm errors and the log-likelihood

To support the arguments presented in Section 2.2.3 that the relative max norm error in the

covariance matrix is a meaningful error metric for maximum likelihood estimation, we perform

a simple numerical study. We take 100 equispaced locations in the interval [0,1] and construct

dense covariance matrices using closed form entry evaluation and our scheme with relative max

norm tolerance 𝜀 = 1e-8 for Matérn models with 𝜈 = 1
2 ,

5
2 and 𝜌 ranging from 1e-8 to 1e4, with 𝜑

chosen so that𝐾 (0) = 1. Using data 𝒛 simulated using the entry evaluation covariance matrix, we

then compute the same log-likelihoods in arbitrary precision as reference and plot the relative

error in the log-likelihood |ℓ (Σ) − ℓ (Σ̃) |/|ℓ (Σ) | as a function of the standard 2-norm condition

number 𝜅 (Σ): For well-conditioned Σ we see that the number of correct max norm digits in Σ

agrees with the number of correct digits in the log-likelihood — 8 for our method and roughly

16 for direct kernel evaluation. However, as we increase the lengthscale, the conditioning of Σ

degrades and we lose accuracy in the log-likelihood even for double precision closed form entry

evaluation. The conclusion is thus that for well conditioned covariance matrices, controlling the

relative max norm does in practice control the log-likelihood error. However, there is no way

to circumnavigate ill-conditioning; if Σ is ill-conditioned, the log-likelihood cannot be accurately
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Figure 2.4: Log-likelihood relative error as a function of covariance matrix condition number. Solid lines
are double precision evaluation of the closed form Matérn covariance, and dashed lines are from our
method with 𝜀 = 1e-8.

evaluated in double precision regardless of how the entries of Σ are computed.

2.3.3 Designing new spectral densities

As amotivating example to illustrate how easily practitioners can write models in the spectral

domain, we study a generalization of the standard Matérn model 𝐾 (𝑟 ) ∝ 𝑟𝜈K𝜈 (𝑟 ). Two known

limitations of the Matérn model are its exponential decay as 𝑟 → ∞ for any finite 𝜈 , and its

inability to take on negative values. While loosening these restrictions in “kernel space" is chal-

lenging, it is trivial to write spectral densities whose corresponding kernels move beyond these

limitations. Consider, for example, the model

𝑆𝜽 (𝜔) = 𝜑2 (𝜆 + (1 − 𝜆) |𝜔 |𝛾
) (
𝜌2 + |𝜔 |𝜏

)−𝜈− 1
2 , 𝜽 := {𝜑, 𝜆,𝛾, 𝜌, 𝜏, 𝜈}, (2.31)

with 𝜆 ∈ [0, 1], 𝜏 ∈ (0, 2], and the constraint 𝜏 (𝜈 + 1/2) − 𝛾 > 1 for integrability. In the case

𝜏 = 2 this is precisely a standard Matérn model plus a fractional derivative of a standard Matérn

model. For 𝜏 < 2 the function 𝑆𝜽 will not be smooth at the origin, so the corresponding kernel

will decay more slowly than the exponential rate of the standard Matérn. For small values of 𝜆

and large enough values of 𝛾 , the corresponding kernel can also take negative values. Figure 2.5
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shows an example of this model.

Figure 2.5: The generalized Matérn spectral density (2.31) (left), its corresponding covariance function
(center), and a sample path from the process (right).

To further highlight the broad class of novel models which can be specified through their

spectral densities and fit using our method, we consider two more examples. The first is an

“oscillatory" Matérn spectral density given by

𝑆𝜽 (𝜔) = 𝜑2(𝜌2 + 𝜔2)−𝜈− 1
2

(
1 − 𝑒−𝜆 |𝜔 | sin(𝛾 |𝜔 |)

)
, 𝜽 := {𝜑, 𝜌, 𝜈, 𝜆,𝛾}. (2.32)

This model promotes oscillatory behavior through strong negative then positive kernel values

near the origin, while still maintaining full control over the mean-square differentiability of the

process through the parameter 𝜈 .

The final model we consider here is a semi-parametric long-memory model given by

𝑆𝜽 (𝜔) = 𝜑2 |𝜔 |−𝛼 exp
{
−𝜆 |𝜔 | +

𝐾∑︁
𝑘=0

𝑐𝑘𝑇𝑘

(
|𝜔 | − 𝜌
|𝜔 | + 𝜌

)}
, 𝜽 := {𝜑, 𝛼, 𝜆, 𝜌, 𝑐0, . . . , 𝑐𝐾 }, (2.33)

where 𝑇𝑘 is the Chebyshev polynomial of order 𝑘 . This model is in the spirit of semi-parametric

ideas like the popular spectral mixture kernel [126] in that it avoids directly specifying the func-

tional form of the spectral density. The singularity parameter here again gives the model the

flexibility to capture slowly decaying tails in the covariance function, and the arbitrary number

of orthogonal polynomials affecting frequencies near the origin can yield flexible kernels. Both of

these models are shown in the spectral domain, covariance domain, and with an example sample
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Figure 2.6: The top row shows the “oscillatory” Matérn spectral density (2.32) (left), its corresponding
covariance function (center), and a sample path from the process (right). The bottom row displays analo-
gous quantities for the semi-parametric long-memory model (2.33).

path in Figure 2.6.

2.3.4 Singular Matérn model

As previously mentioned, the singular Matérn model (2.26) is a useful tool for validating our

approach and demonstrating its effectiveness for spectral densities with origin singularities. The

Fourier transform of (2.26) is given by

𝐾 (𝑟 ) = 2
∫ ∞

0
|𝜔 |−𝛼𝜑 (𝜌2 + 𝜔2)−𝜈−1/2 cos(2𝜋𝜔𝑟 ) d𝜔 (2.34)

=
𝜑

𝜌2𝜈 (2𝜋𝑟 )−𝛼 Γ(𝜈 + 1
2 )

[
(2𝜋𝑟𝜌)−𝛼 Γ( 2𝜈+𝛼2 )Γ( 1−𝛼2 ) 1𝐹2

(
1−𝛼
2 , {

1
2 ,

2−2𝜈−𝛼
2 }, (𝜌𝜋𝑟 )2

)
+ 2(2𝜋𝑟𝜌)2𝜈 cos( (2𝜈+𝛼)𝜋2 )Γ( 2𝜈+12 )Γ(−𝛼 − 2𝜈) 1𝐹2

(
2𝜈+1
2 , { 1+2𝜈+𝛼2 , 2+2𝜈+𝛼2 }, (𝜌𝜋𝑟 )2

)]
,

where Γ is the Gamma function and 1𝐹2 is a generalized hypergeometric function [90]. Evalu-

ating this 𝐾 (𝑟 ) accurately in double precision is extremely challenging, as the two terms inside

the brackets are rapidly growing numbers of opposite signs which approach each other in abso-
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lute value and cancel as 𝑟 grows. In exact arithmetic this is not a problem, but it poses a serious

numerical issue in finite precision. Consider the case where both of the above terms have ab-

solute value of order 1e20, and a routine for evaluating any of the constituent special functions

incurs a numerical relative error of even 10−15. Such small relative errors are inevitable, as double

precision floating point numbers store only roughly 16 relative digits. Then an addition which

should result in exact cancellation to zero could give a value of size 10−15 × 1020 ≈ 105 instead.

Considering how quickly the inner terms grow, one reaches this regime for small 𝑟 even with

non-pathological choices of 𝜑 , 𝜌 , and 𝜈 .

To illustrate the challenge of evaluating the singular Matérn covariance function (2.34), we

compare three methods for computing 𝐾 (𝑟 ): one using a double-precision library for all special

functions, one using the extended precisionmathematical library Arb [65] for all special functions

with 10,000 bits of precision, and our method.

Figure 2.7: A comparison of the three methods for evaluating the covariance function given in Equation
2.34: the double-precision direct kernel routine (red), the extended precision direct kernel routine (blue),
and our Fourier quadrature routine (black).

Figure 2.7 shows the evaluated kernel on a regular grid of points in [0, 1] for a choice of

𝜈 = 2.1, 𝛼 = 0.3, several 𝜌 values, and in all cases a 𝜑 such that 𝐾 (0) = 1, which is a “best case"

numerical choice. For the case 𝜌 = 2, Figure 2.7 shows good visual agreement between the three

methods. But as 𝜌 is increased, we can see that both direct evaluation methods clearly fail to

achieve even a single correct digit by 𝑟 = 0.8. For 𝜌 = 10, which is again still not a pathological

parameter choice, we see that both direct evaluation methods are so affected by roundoff errors
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ruining cancellation that they provide 𝐾 (1) to be on the order of 1e14.

The difficulty of accurately evaluating𝐾 (𝑟 ) for large 𝑟 is especially problematic because long-

memory models are most commonly applied to data which are strongly dependent on long time

horizons — and it is precisely these cases in which evaluating the covariance function for large 𝑟

is most relevant. This is because singular spectral densities can be used to build covariance func-

tions that decay exceptionally slowly. As the following theorem demonstrates, singular spectral

densities can provide covariance functions that are square-integrable but not integrable, or for

𝛼 > 1
2 not even square-integrable.

Theorem 2.3. Let 𝑆 ∈ 𝐶2(R) ∩ 𝐿1(R) be a bounded, symmetric, positive spectral density with

𝑆′, 𝑆′′ ∈ 𝐿1(R). Then for all 𝛼 ∈ [0, 1)

𝐾𝛼 (𝑟 ) := 2
∫ ∞

0
|𝜔 |−𝛼𝑆 (𝜔) cos(2𝜋𝜔𝑟 ) d𝜔 ∼ 𝑟−1+𝛼 as 𝑟 → ∞. (2.35)

Proof. Define the covariance function 𝐾 := F −1{𝑆} corresponding to 𝑆 . As 𝑆 is integrable, 𝐾 is

well defined and bounded

|𝐾 (𝑟 ) | ≤
∫ ∞

−∞
𝑆 (𝜔) |cos(2𝜋𝜔𝑟 ) | d𝜔 = ∥𝑆 ∥𝐿1 (R) < ∞. (2.36)

As 𝑆 ∈ 𝐶2(R) and 𝑆′, 𝑆′′ ∈ 𝐿1(R), integrating by parts twice and applying the Riemann-Lebesgue

lemma gives the standard decay rate 𝐾 (𝑟 ) = 𝑜 (𝑟−2) for 𝑟 → ∞. Therefore 𝐾 is integrable with

𝑀 :=
∫ ∞

−∞
𝐾 (𝑡)𝑑𝑡 < ∞. (2.37)

Using the fact that

F −1{ |·|−𝛼 }
(𝑟 ) = (2𝜋)𝛼 Γ(1 − 𝛼)

𝜋
sin

(𝜋𝛼
2

)
|𝑟 |−1+𝛼 (2.38)
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in the distributional sense and applying the convolution theorem, we obtain

𝐾𝛼 (𝑟 ) = F −1
{
|·|−𝛼 𝑆 (·)

}
(𝑟 ) (2.39)

=

(
F −1{ |·|−𝛼 }

∗ F −1{𝑆}) (𝑟 ) (2.40)

∝
(
|·|−1+𝛼 ∗ 𝐾

)
(𝑟 ) (2.41)

=

∫ ∞

−∞
|𝑡 |−1+𝛼 𝐾 (𝑟 − 𝑡) d𝑡 . (2.42)

Take 0 < 𝑐 < (1−𝛼) 1
2−𝛼 < 1. First consider the upper tail of the integral (2.42). Taylor expanding

around 𝑡 = 𝑟 gives

∫ ∞

𝑐𝑟

𝑡−1+𝛼𝐾 (𝑟 − 𝑡) d𝑡 =
∫ ∞

𝑐𝑟

(
𝑟−1+𝛼 − (1 − 𝛼)𝜉−2+𝛼 (𝑡 − 𝑟 )

)
𝐾 (𝑟 − 𝑡) d𝑡 (2.43)

for some 𝜉 between 𝑟 and 𝑡 . This results in two terms. As 𝐾 is integrable, the first term gives the

desired asymptotic behavior

𝑟−1+𝛼
∫ ∞

𝑐𝑟

𝐾 (𝑟 − 𝑡) d𝑡 = 𝑟−1+𝛼
(
𝑀 −

∫ ∞

(1−𝑐)𝑟
𝐾 (𝑢) d𝑢

)
∼ 𝑟−1+𝛼 . (2.44)

As 𝜉 ≥ 𝑐𝑟 and 𝐾 (𝑟 ) = 𝑜 (𝑟−2) for 𝑟 → ∞, the second term decays with at least this asymptotic

rate

(1 − 𝛼)
∫ ∞

𝑐𝑟

𝜉−2+𝛼 (𝑡 − 𝑟 )𝐾 (𝑟 − 𝑡) d𝑡 ≲ 𝑟−1+𝛼 (2.45)

and by our choice of 𝑐 , is strictly smaller in magnitude than (2.44), which avoids cancellation.

Next consider the lower tail of (2.42)

∫ −𝑐𝑟

−∞
(−𝑡)−1+𝛼𝐾 (𝑟 − 𝑡) d𝑡 ≤ 𝑟−1+𝛼

∫ ∞

(1+𝑐)𝑟
𝐾 (𝑢) d𝑢 ≲ 𝑟−2+𝛼 (2.46)
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again due to the fact that 𝐾 (𝑟 ) = 𝑜 (𝑟−2) for 𝑟 → ∞. Finally consider the central term in (2.42).

Define the interval 𝐼𝑟 := [(1 − 𝑐)𝑟, (1 + 𝑐)𝑟 ]. Then we have

∫ 𝑐𝑟

−𝑐𝑟
𝑡−1+𝛼𝐾 (𝑟 − 𝑡) d𝑡 ≤ ∥𝐾 ∥𝐿∞ (𝐼𝑟 )

2
𝛼
(𝑐𝑟 )𝛼 ≲ 𝑟−2+𝛼 (2.47)

as ∥𝐾 ∥𝐿∞ (𝐼𝑟 ) = 𝑜 (𝑟−2) for 𝑟 → ∞. □

Wenote that the requirement 𝑆 ∈ 𝐶2(R) is far from a necessary condition, and this asymptotic

behavior is a very general phenomenon. For example 𝑆 (𝜔) = 𝑒−|𝜔 | yields the covariance function

𝐾𝛼 (𝑟 ) =
2

Γ(1 − 𝛼)

(
1 + (2𝜋𝑟 )2

)− 1
2 (1−𝛼) cos

(
(1 − 𝛼) tan−1(2𝜋 |𝑟 |)

)
∼ 𝑟−1+𝑎 (2.48)

as 𝑟 → ∞ despite the fact that 𝑆 is not even𝐶1(R). In such cases where 𝑆 is monotonic on [0,∞),

one can apply more general Tauberian results from the theory of slowly varying functions to

obtain the same asymptotic decay [12, Theorem 4.10.3].

Remark 2.4. It is possible that one could use an expansion of the hypergeometric function in

conjunction with relevant special function identities to derive an evaluation scheme for (2.34)

which avoids the numerical instability of adding very large floats. However, doing so efficiently

and accurately would represent a significant research endeavor, and our method can evaluate a

broad class of such covariance functions without requiring further kernel-specific effort.

2.3.5 Performance for dense covariance matrix construction

As discussed in Section 2.2.3, by controlling the pointwise error relative to 𝐾 (0) we have

bounded the relative max-norm error in any covariance matrix with entries computed using our

method. In Figure 2.8, we demonstrate agreement between the user-specified tolerance 𝜀 and

the relative error in Σ in various matrix norms with 𝑁 = 1000 random observation locations

𝑥1, . . . , 𝑥𝑁
i.i.d.∼ Unif( [0, 1]) for a slowly-decaying singular Matérn model with 𝜈 = 0.51, 𝜌 = 0.5,
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Figure 2.8: Comparison of the relative error ∥𝑨− 𝑨̃∥/∥𝑨∥ with the requested tolerance 𝜀 for a variety of
matrix norms, where 𝑨 = Σ (first and second plots) or 𝑨 = 𝜕

𝜕𝜃
Σ (third and fourth plots). In the first plot,

𝛼 is set to zero to test the non-singular case, and all other parameters remain unchanged.

and 𝛼 = 0.1, with 𝜑 chosen so that 𝐾 (0) = 1. We also show analogous errors in the derivative

matrices 𝜕
𝜕𝜃

Σ computed using AD for parameters 𝜃 ∈ {𝜈, 𝛼}, for which the derivatives are most

numerically challenging.

Having confirmed the accuracy of our scheme, we now study its computational cost, and

demonstrate that both the NUFFT and our Nyquist-based heuristic for increasing panel length

are necessary for computational efficiency. For various 𝑁 ranging from 10 to 10,000, we form

the dense covariance matrix for 𝑁 uniform random observation locations in [0, 1] as above and

time three approaches. First, we run our adaptive Gauss-Legendre method and time only the

evaluation of the necessary NUFFTs, excluding the computation of error estimates. This provides

a fair comparison with the trapezoidal rule, which is non-adaptive. Second, we repeat this with

direct Fourier sums in place of the NUFFT. Finally, we use [2, Corollary 6] to determine the

grid spacing ℎ and number of quadrature nodes𝑚 in a trapezoidal rule necessary to obtain each

tolerance, and time the “type 2” NUFFT needed to compute kernel values from this quadrature

rule. Figure 2.9 shows the resulting runtimes using an 8 core Apple M1 Pro CPU with 32GB of

memory.

There are a two significant conclusions to be gathered from these results. The most obvious is

the paramount importance of the NUFFT. The difference between O(𝑛𝑚) and O(𝑚+𝑛 log𝑛) com-
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Figure 2.9: A comparison of the runtime cost of computing kernel values from a Matérn model with
𝜈 = 0.55, 𝛼 = 0.5, and𝜑 chosen so that𝐾 (0) = 1. For three tolerances 𝜀 we plot Gauss-Legendre quadrature
with direct summation (blue), global trapezoidal quadrature with the NUFFT (green), and Gauss-Legendre
quadrature with the NUFFT (red).

plexity for direct summation and the NUFFT respectively gives an orders of magnitude speedup,

without which one can afford to compute only very few kernel values. The other conclusion is the

necessity of our Nyquist-based heuristic for obtaining high accuracy kernel values. For tolerance

𝜀 = 10−8, the trapezoidal rule requires both small ℎ in order to resolve the spectral density near

the origin, as well as large𝑚 to control the truncation error. This results in a very large NUFFT

of size𝑚 ≈ 1e8. The O(𝑚) “spreading” step in the NUFFT thus becomes the dominant cost for all

tested 𝑛, leading to a nearly constant cost which is orders of magnitude slower than our adaptive

quadrature for moderate 𝑛. For 𝜀 = 10−12, the necessary number of equispaced trapezoidal nodes

is 𝑚 ≈ 1e12, and results in memory issues. As our adaptive scheme uses panels with 𝑚 = 216

nodes, the O(𝑚) “spreading” step is only the bottleneck up to 𝑛 = 1e5 or so, after which the

O(𝑛 log𝑛) equispaced FFT which is evaluated within the NUFFT routine becomes the dominant

cost, and we see quasilinear scaling with 𝑛. Therefore our method still runs in seconds, even

when computing the kernel at approximately 50 million distances to 12 digit accuracy.
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2.4 Application

In this section we demonstrate the practical value of our framework with an application to

high-frequency vertical wind profiles. The US Department of Energy’s Atmospheric Radiation

Measurement (ARM) program offers a large collection of freely available measurements collected

at field sites across the country, and in this chapter we look at the Doppler LiDAR-based vertical

wind profiles made at the main field site in the Southern Great Plains (SGP) collection [84, 86].

These measurements of vertical profiles are made at a temporal resolution of approximately one

second and a spatial resolution of 30m, thus providing particularly high resolution in time. How-

ever, aside from some special small segments across the several years’ worth of data, the measure-

ments have frequent interruptions due to horizontal sweeps made by the sensor, occasional long

pauses for various reasons, or other momentary instrument-based delays. For this reason, unless

one focuses on very narrow time intervals of approximately 12 − 13 minutes or is uninterested

in studying high-frequency structure of the process, approaches like ours for continuous-time

models which are applicable to irregularly sampled data become necessary.

2.4.1 Preliminary analysis

We investigate here the same six days that were studied in [42], but by lifting the limitation

of gridded data, we can examine a full hour of data on each of the days. Figure 2.10 shows an

example of one hour of measurements made at the altitude of 240m.

A practitioner looking to model this data may first compute a Whittle-type estimator [124]

as an exploratory tool. Figure 2.11 shows the result of Whittle estimation that is performed by

treating each of the six one-hour segments of data as i.i.d. samples, breaking them into four

segments based on the largest gaps and ignoring the smaller irregularities, and computing one

averaged periodogram per day. The Whittle MLE for this data implies a strong singularity of 𝛼 ≈

0.62, corresponding to a process with significant long-range dependence even when segments
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Figure 2.10: The Doppler LIDAR data from 1400-1500 UTC on June 03, 2015, at an altitude of 240m.
Vertical lines are given to emphasize the largest three gaps in measurements.

Figure 2.11: Whittle MLE for the singular Matérn model computed treating the six days of LiDAR data
as i.i.d. samples and doing rudimentary gap and sample irregularity handling.

are constrained to 12 − 13 minutes, which limits the lowest observable frequencies.

2.4.2 Parameter estimation methodology

Motivated by this exploratory analysis, in this sectionwe individually fit each of the six days of

data as a continuous-time process using the singularMatérnmodel. In all cases, theMLE indicates

a strong singularity comparable to the one obtained by the Whittle estimator. We additionally

fit a standard Matérn model to compare log-likelihoods, and in all cases the log-likelihood of the

data is materially improved by adding the singularity.

All estimates discussed below were obtained using the Artelys KNITRO optimizer [20] with

the sequential quadratic programming (SQP) algorithm. In this spirit of Fisher scoring, we use
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the expected Fisher information matrix, given by

I(𝜽 ) 𝑗𝑘 =
1
2
tr

(
Σ−1
𝜽

[
𝜕

𝜕𝜃 𝑗
Σ𝜽

]
Σ−1
𝜽

[
𝜕

𝜕𝜃𝑘
Σ𝜽

] )
, (2.49)

as a proxy for the Hessian of the log-likelihood. This matrix has the benefit of being computable

with only first derivatives of the covariance function, and has meaningfully better performance

than a general-purpose BFGS approximation [6, 42, 43, 56].

2.4.3 Results

We now discuss in detail the estimation results for the data on June 03, one of the six days

that was studied. The results from fitting singular and standard Matérn models with a nugget are

summarized by point estimates and terminal likelihood values in Table 2.1. Along with point esti-

mates, this table provides standard deviations implied by the expected Fisher information matrix.

These implied uncertainties are often informative, but should be interpreted with care because

the regularity conditions under which the expected Fisher matrix converges to the asymptotic

precision of the MLE do not hold in many spatial modeling settings [110].

fixed 𝛼 = 0 fitted 𝛼
ℓ (𝜽 ) -1898.42 -1948.35
𝜑 25.72 (4.182) 205.3 (95.429)
𝜌 100.0 (7.854) 351.2 (45.705)
𝜈 0.7947 (0.023) 0.6908 (0.058)
𝛼 — 0.775 (0.072)

Table 2.1: MLE estimates and terminal negative log-likelihoods for the standardMatérn (fixed 𝛼 = 0) and
the singular Matérn model for data on June 03. When possible, expected Fisher matrix-implied standard
deviations are provided in parentheses.

The most obvious observation from Table 2.1 is that the singular Matérn model has a ma-

terially better log-likelihood than the standard Matérn model. A more scientifically interesting
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observation pertains to the implied smoothness of the process: noting that

𝜑2 |𝜔 |−𝛼 (𝜌2 + 𝜔2)−𝜈− 1
2 ∼ 𝜔−𝛼−2𝜈−1 (2.50)

at high frequencies, we see that the implied decay rate of the singular Matérn spectral density

using the estimated (𝜈, 𝛼) ≈ (0.69, 0.78) is 𝛽 = 𝛼 + 2𝜈 + 1 ≈ 3.06. Recall that a process with spec-

tral density 𝑆 is mean-square differentiable if and only if
∫
𝜔2𝑆 (𝜔) < ∞, which in this notation

is equivalent to 𝛽 > 3. Therefore, under the singular model where 𝛼 is estimated, the process

is mean-square differentiable, whereas in the standard Matérn model the estimate of 𝜈 = 0.79

gives the decay 𝛽 = 2𝜈 + 1 ≈ 2.58 which implies that it is not. The differentiability of these

measurements below the atmospheric boundary layer (ABL) where convective forces are dom-

inant and the process exhibits chaotic behavior has been a question of interest in several prior

applications [42, 44], with parameter estimates often being very borderline. The differentiability

under the singular Matérn model is an indication that the long-range dependence parameter 𝛼

may be valuable in disentangling low-frequency and high-frequency behavior in such processes,

and agrees with the more recent work that uses continuous-time models in kernel-space [44].

A related observation that is particularly interesting from a theoretical perspective is that, to

the degree that the expected Fisher information matrices can be trusted to serve as proxies for

the precision of the MLE, the smoothness and singularity parameters 𝜈 and 𝛼 are jointly resolved

reasonably well. Table 2.1 shows that the implied uncertainties for both of those parameters are

small, whereas the parameters 𝜑 and 𝜌 which now most affect moderate frequencies are much

less well-resolved. It is well-known that in most fixed-domain asymptotic regimes in fewer than

four dimensions, no individual parameter besides the smoothness 𝜈 in the Matérn model can

be estimated consistently [62, 110, 128], and in light of this observation the high uncertainty in

𝜑 and 𝜌 is not surprising. For the singular Matérn model in particular, however, 𝜌 serves the

important purpose of making 𝑆 bounded at the origin, so that the singularity parameter 𝛼 can be
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disentangled from the effect of 𝜈 on the tail decay in the model |𝜔 |−𝛼𝑆 (𝜔).

Figure 2.12: Left: Model-implied spectral densities for the data on June 03 and the parameter estimates
in Table 2.1. Right: the corresponding model-implied kernels.

To understand what these estimates imply about the spectral densities and covariances of the

processes, Figure 2.12 shows the MLE-implied spectra and kernel values from both models. As

can be seen, the singular model moves much of the spectral mass into the singularity near the

origin, and the more rapid decay in the tails of the singular Matérn spectral density is clearly

visible. The plot of the implied kernel values in the center of Figure 2.12 shows a more dramatic

difference, as the estimated standard Matérn kernel is highly concentrated at the origin, while

the singular Matérn kernel displays slow decay. Finally, Figure 2.13 shows sample paths from the

two MLE-implied models computed with the same white noise forcing. As Table 2.1 and Figure

2.12 would suggest, the additional high-frequency information in the standard Matérn model is

quite prominent.

2.5 Discussion

In this chapter we introduce a numerical method for efficiently and accurately evaluating the

Fourier transform of spectral densities, even those that are barely integrable due to singulari-

ties at the origin or slowly decaying tails. Making this strategy computational practical requires

several technical observations. The first and most crucial is that high-order quadrature rules

can significantly accelerate convergence. The use of the NUFFT is critical for this purpose, as
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Figure 2.13: Sample paths with identical white noise forcing of the processes implied by the standard
Matérn MLE (orange dashes) and the singular Matérn MLE (solid black), showing the noticeable affect of
the more rapid spectral decay implied by the singular Matérn model.

it reduces the computational cost to quasilinear complexity in both the number of quadrature

nodes 𝑚 and the number of inter-observation distances 𝑛. The second vital observation is that

the covariance function 𝐾 is generally resolved to a given tolerance 𝜀 more quickly at distances

𝑟 that are well-separated from the origin. Therefore one can adaptively increase the width of

panels being integrated as one reduces the highest frequency oscillations in the integrands re-

maining to be resolved. This Nyquist-based observation is essential to overcoming the difficulties

of slowly decaying spectral densities, which may take orders of magnitude longer to converge if

one were to use a more uniform quadrature rule. Finally, the design of an efficient but precise

stopping criterion based on both truncation error and panel contribution is imperative to keep-

ing the routine performant but accurate for a wide variety of spectral densities. Combining all

of these observations and the additional technical discussions provided in Section 2.2, one can

evaluate covariance functions specified by these spectral densities at tens of millions of locations

in seconds on a laptop.

The cost of using this method to compute kernel values will naturally be significantly higher

than direct kernel evaluation when a simple closed form exists, for example the standard Matérn

model. Although the evaluation of K𝜈 makes the Matérn covariance numerically challenging,

it can be computed to nearly machine precision in less than a microsecond due to advances in

modern special function libraries [45]. Therefore, in such cases where efficient special function

40



implementations can be used, direct kernel evaluation will likely be both faster andmore accurate

than even the 𝜀 = 10−12 given by our method. Yet for the vast majority of spectral densities whose

Fourier transforms are completely unavailable in closed form, our method is a robust, broadly ap-

plicable option for obtaining direct kernel evaluations for irregularly sampled data which can be

composed with a practitioner’s estimation method of choice. The code and details of the integra-

tion strategy can surely be improved, further reducing the overall cost of this approach—but even

now it makesmanymodeling choices available that were previously effectively impossible. While

the LiDAR application in this chapter is focused on the singular Matérn model, we again remind

the reader that the objective of this framework is to empower practitioners to work with any

continuous, integrable spectral density. The extremely slow decay of a long-memory covariance

function is of course not always desirable, and there are many other new ways to add valuable

degrees of freedom to parametric families of spectral densities. It is our hope that this method and

the accompanying software will inspire others to explore and discover new parametric families

of models useful to their own contexts.

We emphasize that our framework can be used in conjunction with a number of existing

methods for large scale and nonstationary GPs. First, because it requires only a spectral density

and a list of distances 𝑟 𝑗 at which to evaluate the corresponding covariance function, our method

can be used with any approximation strategy for which these distances are specified in advance.

Examples include Vecchia approximation methods [68, 112, 121] and entry-based rank-structured

covariance matrix approximations [6, 25, 43]. Second, we note that while our approach is of

course intrinsically limited to evaluating stationary covariance functions, it is compatible with

a number of methods which construct nonstationary models from stationary ones, including

warping [101] and convolutional frameworks [93].

Finally, it is natural to ask how this methodology can be extended to multiple dimensions. For

any isotropic spectral density 𝑆 (𝝎) = 𝑆 (∥𝝎∥) in R𝑑 one can integrate out the radial variables,
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log10 𝑆 (𝝎) 𝐾 (𝒓) 𝑍 (𝒙)

Figure 2.14: Log of spectral density (left), corresponding covariance function (center), and sample from
the process (right) using the isotropic “oscillatory” Matérn model (2.32) in two dimensions.

resulting in the covariance function

𝐾 (𝒓) =
∫
R𝑑

𝑆 (∥𝝎∥)𝑒2𝜋𝑖𝝎⊤𝒓 d𝝎 =
2𝜋

𝑟
𝑑
2−1

∫ ∞

0
𝑆 (𝜔) 𝐽𝑑

2−1
(2𝜋𝜔 ∥𝒓 ∥)𝜔 𝑑

2 d𝜔 (2.51)

where 𝐽𝜈 is the Bessel function of the first kind of order 𝜈 . We can compute this integral using the

one-dimensional adaptive integration framework just described, with the onlymodification being

that the NUFFT is replaced by a nonuniform fast Hankel transform. While there exist a number

of fast Hankel transform algorithms [29, 117], we are not aware of an existing fully nonuniform

method in which 𝑟 and 𝜔 can be chosen freely to accommodate the use of Gaussian quadrature

rules for irregularly sampled data. Without this fast transform, we are restricted to direct O(𝑛𝑚)

summation to compute each panel integral. Figure 2.14 shows an example of a 2D isotropic kernel

computed with direct summation. In the following chapter, we develop the necessary NUFHT to

accelerate these panel integral computations in higher dimensions.
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3 | A nonuniform fast Hankel

transform

3.1 Introduction

In this chapter —motivated by the panel integration framework detailed in the previous chap-

ter — we describe a fast algorithm for computing discrete Hankel transforms of moderate orders

from 𝑛 nonuniform points to𝑚 nonuniform frequencies in O
(
(𝑚 + 𝑛) logmin(𝑛,𝑚)

)
operations.

Our approach combines local and asymptotic Bessel function expansions with nonuniform fast

Fourier transforms. The order of each expansion is adjusted automatically according to error anal-

ysis to obtain any desired precision 𝜀. Several numerical examples are provided which demon-

strate the speed and accuracy of the algorithm in multiple regimes and applications.

The problem of computing Fourier transforms of radially symmetric functions in dimen-

sions 𝑑 ≥ 2, as seen in the GRF context in (2.51), is common across a variety of applications

from electromagnetics to imaging. To agree with the dominant convention in the literature in

those fields, we exchange the roles of 𝜔 and 𝑟 used in Chapter 2 for the duration of this chapter.

In this notation, we will study here the problem of, for example, computing the Fourier transform

of a function 𝑓 in two dimensions given by

𝑔(𝜔1, 𝜔2) =
1
4𝜋2

∬
R2
𝑓 (𝑥1, 𝑥2) 𝑒−𝑖 (𝜔1𝑥1+𝜔2𝑥2) 𝑑𝑥1 𝑑𝑥2. (3.1)
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Transforming to polar coordinates (𝜔1, 𝜔2) ↦→ (𝜔, 𝛼) and (𝑥1, 𝑥2) ↦→ (𝑟, 𝜃 ) the above expression

becomes
𝑔(𝜔, 𝛼) = 1

4𝜋2

∫ 2𝜋

0

∫ ∞

0
𝑓 (𝑟, 𝜃 ) 𝑒−𝑖𝜔𝑟 (cos𝛼 cos𝜃+sin𝛼 sin𝜃 ) 𝑟 𝑑𝑟 𝑑𝜃

=
1
4𝜋2

∫ 2𝜋

0

∫ ∞

0
𝑓 (𝑟, 𝜃 ) 𝑒−𝑖𝜔𝑟 cos(𝛼−𝜃 ) 𝑟 𝑑𝑟 𝑑𝜃 .

(3.2)

Furthermore, if 𝑓 is radially symmetric, i.e. 𝑓 (𝑟, 𝜃 ) = 𝑓 (𝑟 ), then the above transform can be

written as
𝑔(𝜔, 𝛼) = 1

4𝜋2

∫ ∞

0
𝑓 (𝑟 ) 𝑟

∫ 2𝜋

0
𝑒−𝑖𝜔𝑟 cos(𝛼−𝜃 ) 𝑑𝜃 𝑑𝑟

=
1
2𝜋

∫ ∞

0
𝑓 (𝑟 ) 𝐽0(𝜔𝑟 ) 𝑟 𝑑𝑟,

(3.3)

where we have used the integral representation of the zeroth-order Bessel function [90]

𝐽0(𝑥) =
1
𝜋

∫ 𝜋

0
cos (𝑥 cos𝜃 ) 𝑑𝜃 . (3.4)

The final integral involving 𝐽0 in equation (3.3) is known as a Hankel Transform of order 0 —

usually referred to simply as a Hankel Transform.

In higher ambient dimensions, the Fourier transform of radially symmetric functions reduces

to a Hankel transform of higher order. Similarly, if the function 𝑓 in (3.2) has a particular periodic

dependence in 𝜃 so that 𝑓 (𝑟, 𝜃 ) = 𝑓 (𝑟 )𝑒𝑖𝜈𝜃 with 𝜈 ∈ Z, then we have

𝑔(𝜔, 𝛼) = 1
4𝜋2

∫ ∞

0
𝑓 (𝑟 ) 𝑟

∫ 2𝜋

0
𝑒−𝑖𝜔𝑟 cos(𝛼−𝜃 ) 𝑒𝑖𝜈𝜃 𝑑𝜃 𝑑𝑟

=
𝑖𝜈

2𝜋

∫ ∞

0
𝑓 (𝑟 ) 𝑟 𝐽𝜈 (𝜔𝑟 ) 𝑑𝑟,

(3.5)

where, again, we have invoked an integral representation for 𝐽𝜈 [90].

In order to numerically compute 𝑔 in (3.3) or (3.5) at a collection of𝑚 “frequencies” 𝜔 𝑗 , the

Hankel transform must be discretized using an appropriate quadrature rule with nodes 𝑟𝑘 and

weights𝑤𝑘 which depend on the particular class of 𝑓 for which the integral is desired. In general
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this results in the need for computing

𝑔(𝜔 𝑗 ) ≈ 𝑔 𝑗 :=
𝑛∑︁
𝑘=1

𝑤𝑘 𝑓 (𝑟𝑘) 𝑟𝑘 𝐽𝜈 (𝜔 𝑗𝑟𝑘)

=

𝑛∑︁
𝑘=1

𝑐𝑘 𝐽𝜈 (𝜔 𝑗𝑟𝑘) for 𝑗 = 1, . . . ,𝑚.
(3.6)

The above sum will be referred to as the Discrete Hankel Transform (DHT) of order 𝜈 .

In our motivating example — computing the continuous Fourier transform — the DHT arises

from the discretization of the radially symmetric Fourier integral. The DHT also appears in a

wide range of applications including imaging [60, 81, 129], statistics [41, 79], and separation of

variables methods in partial differential equations [1, 13, 130]. In many such applications, a fully

nonuniform DHT is desired, as the relevant frequencies 𝜔 𝑗 may not be equispaced, and the most

efficient quadrature rule for discretizing (3.3) may have nodes 𝑟𝑘 which are also not equispaced.

The algorithm of this work allows for arbitrary selection of the frequencies 𝜔 𝑗 and nodes 𝑟𝑘 ,

in contrast to other algorithms which require some structure to their location (e.g. equispaced or

exponentially distributed). There are a few types of commonly encountered DHTs, all of which

our algorithm can address. Schlömilch expansions [77, 117] take frequencies 𝜔 𝑗 = 𝑗𝜋 . Fourier-

Bessel expansions — often used in separation of variables calculations for PDEs — take frequen-

cies 𝜔 𝑗 = 𝜉𝜈, 𝑗 , where 𝜉𝜈, 𝑗 denotes the 𝑗𝑡ℎ root of 𝐽𝜈 . In the most restrictive cases [66], one fixes

both 𝜔 𝑗 = 𝜉𝜈, 𝑗 and 𝑟𝑘 = 𝜉𝜈,𝑘/𝜉𝜈,𝑘+1.

Existing methods

A number of methods exist in the literature to evaluate (3.3) and (3.6). These include series

expansion methods [19, 22, 80], convolutional approaches [64, 78, 83, 107], and projection-slice or

Abel transform-based methods [58, 67, 91]. See [29] for a review of many of these early computa-

tional approaches. Unfortunately, these existing methods are either not applicable to the discrete
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case, require a particular choice of 𝜔 𝑗 or 𝑟𝑘 due to the constraints of interpolation or quadrature

subroutines, or suffer from low accuracy as a result of intermediate approximations. Therefore,

extending these schemes to compute the fully nonuniform DHTwith controllable accuracy is not

straightforward.

A notable contribution is [78], which describes a fully nonuniform fast Hankel transform. This

work takes the popular convolutional approach, using a change of variables to reformulate the

Hankel transform as a convolution with a kernel whose Fourier transform is known. However, its

accuracy is limited by the need for a quadrature rule on the nonuniform points 𝑟𝑘 . The authors use

an irregular trapezoidal rule for this purpose, which is not high-order accurate. This method also

requires the computation of the inverse NUFFT using conjugate gradients. For even moderately

clustered points or frequencies, this inverse problem is extremely ill-conditioned, and thus the

number of required iterations can be prohibitive. This method is therefore suitable for “quasi-

equispaced” points and frequencies, but is not tractable in general.

More recently, butterfly algorithms [75, 89, 94]were introduced as a broadly applicablemethod-

ology for rapidly computing oscillatory transforms including the nonuniform DHT. However,

these algorithms require a precomputation or factorization stage for each new set of 𝜔 𝑗 and 𝑟𝑘 .

Such precomputations can, unfortunately, be a bottleneck for applications in which these evalu-

ation points change with each iteration or application of the transform. In addition, storing the

butterfly factorization in memory can be prohibitive for very large transforms at high accuracies.

In order to provide a precomputation-free, low-memory DHT, [117] employs a combination of

asymptotic expansions and Bessel function identities evaluated using the equispaced FFT. The

resulting scheme is applicable to equispaced or perturbed “quasi-equispaced” grids in space and

frequency, for example 𝜔 𝑗 = 𝜉0, 𝑗 and 𝑟𝑘 = 𝜉0,𝑘/𝜉0,𝑛+1.
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Novelty of this work

We describe here a precomputation-free nonuniform fast Hankel transform (NUFHT) which

generalizes [117] to the fully nonuniform setting in a number of ways. First, we employ an

adaptive partitioning scheme which, for any choice of 𝜔 𝑗 and 𝑟𝑘 , subdivides the matrix with

entries 𝐽𝜈 (𝜔 𝑗𝑟𝑘) into blocks for whichmatrix-vector products can be evaluated efficiently. Second,

we use the NUFFT to evaluate asymptotic expansions for nonuniform 𝑟𝑘 and𝜔 𝑗 . Finally, we utilize

the low-rank expansion of 𝐽𝜈 given in [127] in the local regime where asymptotic expansions are

not applicable. We derive error bounds for this low-rank expansion, allowing us to choose all

approximation parameters automatically by analysis which guarantees that the resulting error is

bounded by the user-specified tolerance 𝜀.

Outline of the chapter

The chapter is organized as follows. In Section 3.2 we give a high level view of our algorithm,

omitting technical details. Then in Section 3.3 we study the local and asymptotic expansions

of Bessel functions which serve as the key building blocks of the algorithm. Afterward, in Sec-

tion 3.4, we provide a detailed description of the algorithm and its associated complexity. Various

numerical examples are provided in Section 3.5, and we conclude with some additional discussion

in Section 3.6.

3.2 Overview of the algorithm

To more concisely describe our approach, we write the DHT (3.6) as the equivalent matrix-

vector product with A ∈ R𝑚×𝑛

g = Af, A( 𝑗, 𝑘) = 𝐽𝜈 (𝜔 𝑗𝑟𝑘). (3.7)
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Figure 3.1: Bessel function 𝐽0(𝑧) and pointwise relative error in approximating 𝐽0(𝑧) using 31-term local
and 4-term asymptotic expansions. Dotted vertical line shows crossover point where both expansions are
accurate to 𝜀 = 10−12.

The matrix A is in general full rank and possesses complex oscillatory structure. As a result, no

straightforward fast algorithm exists to apply the full matrix A to a vector. However, we design

an NUFHT by noting that certain blocks A( 𝑗0 : 𝑗1, 𝑘0 : 𝑘1) are able to be applied to a vector rapidly

using analytical expansions of the underlying Bessel function 𝐽𝜈 .

When the argument 𝜔 𝑗𝑟𝑘 is small, 𝐽𝜈 is smooth and essentially non-oscillatory, and we use a

closed-form local expansion which approximates 𝐽𝜈 in terms of Chebyshev polynomials, yielding

a low-rank approximation to various matrix blocks that can be applied to a vector in linear time.

When the argument 𝜔 𝑗𝑟𝑘 is large, we use a classical asymptotic expansion which expresses 𝐽𝜈

as a sum of a small number of decaying sinusoids, and can therefore be applied to a vector in

quasilinear time using the NUFFT. Figure 3.1 shows the oscillatory behavior of 𝐽0, as well as the

accuracy of these local and asymptotic expansions.

By analyzing the error in these two expansions, we can choose a crossover point 𝑧 such that an

𝐿-term local expansion and an𝑀-term asymptotic expansion are both guaranteed to be accurate

to the desired tolerance 𝜀 in the regions 𝜔 𝑗𝑟𝑘 ≤ 𝑧 and 𝜔 𝑗𝑟𝑘 > 𝑧 respectively. Next, we adaptively

subdivide A into disjoint blocks so that either 𝜔 𝑗𝑟𝑘 ≤ 𝑧 or 𝜔 𝑗𝑟𝑘 > 𝑧 for all 𝜔 𝑗 and all 𝑟𝑘 in each

block. This leaves only a few small blocks with 𝜔 𝑗𝑟𝑘 ≈ 𝑧 whose entries can be directly computed,
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Local

Asymptotic

𝑟1 < . . . < 𝑟𝑛

𝜔1

∧
...

∧
𝜔𝑚

(a) (b) Level 1 (c) Level 2 (d) Level 3

Figure 3.2: Splitting of Hankel transform matrix A along the curve 𝜔𝑟 = 𝑧 into local and asymptotic
regions. Adaptive subdivision of A into corresponding local (red), asymptotic (blue), and mixed (gray)
sub-blocks at various levels.

and which can be directly applied. Figure 3.2 shows a Hankel transform matrix A divided into

local and asymptotic entries along the curve𝜔𝑟 = 𝑧, as well as the corresponding adaptive subdi-

vision of the matrix into blocks which can be rapidly applied. Following the subdivision step, all

that remains is to apply each of the disjoint blocks of A to f using the corresponding fast method.

3.3 Bessel function approximations

We now describe local and asymptotic expansions of the Bessel function 𝐽𝜈 (𝜔𝑟 ), and provide

error analysis by which one can select the number of terms needed in each expansion to assure

𝜀 accuracy in both regimes.

3.3.1 The Wimp expansion

Near the origin, 𝐽𝜈 is a smooth and essentially non-oscillatory function. As a result, 𝐽𝜈 (𝜔𝑟 ) is

a numerically low-rank function of all sufficiently small inputs 𝜔 and 𝑟 . Fortuitously, one such

low-rank expansion — which we refer to as theWimp expansion — is available in closed form for
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integer 𝜈 [127]. In the case that 𝜈 is even, for all |𝑟 | ≤ 1 we have

𝐽𝜈 (𝜔𝑟 ) =
∞∑︁
ℓ=0

𝐶ℓ (𝜔)𝑇2ℓ (𝑟 )

𝐶ℓ (𝜔) = 𝛿ℓ 𝐽 𝜈2 +ℓ (𝜔) 𝐽 𝜈2−ℓ (𝜔),
(3.8)

where 𝛿0 = 1 and 𝛿ℓ = 2 for all ℓ ≠ 0, 𝑇2ℓ is the Chebyshev polynomial of the first kind of order

2ℓ . A similar expansion exists for 𝜈 odd [127, p. 2.23].

In order to employ the Wimp expansion to compute local terms within the Hankel transform,

we must determine the number of terms 𝐿 needed to construct an 𝜀-accurate approximation to

𝐽𝜈 (𝜔𝑟 ) on a given rectangle (𝜔, 𝑟 ) ∈ [0,Ω] × [0, 𝑅]. The following lemma provides a bound on the

induced truncation error in theWimp expansion as a function of the order 𝜈 , the space-frequency

product Ω𝑅, and the number of retained terms 𝐿.

Lemma 3.1. Truncating the Wimp expansion after 𝐿 terms gives�����𝐽𝜈 (𝜔𝑟 ) − 𝐿−1∑︁
ℓ=0

𝐶ℓ (𝜔𝑅)𝑇2ℓ
( 𝑟
𝑅

)����� ≤ 2 exp
{
𝜈
2 (𝛽 − 𝛾) + 𝐿(𝛽 + 𝛾)

}
1 − 𝑒𝛽+𝛾

=: 𝐵 loc

𝜈,𝐿 (Ω𝑅) (3.9)

for all 𝜔 ∈ [0,Ω], 𝑟 ∈ [0, 𝑅], where

𝜓 (𝑝) := log𝑝 +
√︁
1 − 𝑝2 − log

(
1 +

√︁
1 − 𝑝2

)
(3.10)

𝛽 := 𝜓
(

Ω𝑅

2𝐿 + 𝜈

)
(3.11)

𝛾 :=


𝜓

( Ω𝑅
2𝐿−𝜈

)
𝐿 > 𝜈

2

0 otherwise
(3.12)
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Proof. For 𝜈 even, the truncation error after 𝐿 terms is bounded by����� ∞∑︁
ℓ=𝐿

𝐶ℓ (𝜔𝑅)𝑇2ℓ
( 𝑟
𝑅

)����� ≤ 2
∞∑︁
ℓ=𝐿

����𝐽 𝜈2 +ℓ (
𝜔𝑅

2

)���� ����𝐽 𝜈2−ℓ (
𝜔𝑅

2

)���� . (3.13)

Define 𝑝ℓ (𝜔) := 𝜔𝑅/(𝜈 + 2ℓ). Then by Siegel’s bound [90, p. 10.14.5] we have����𝐽 𝜈2 +ℓ (
𝜔𝑅

2

)���� = ����𝐽 𝜈2 +ℓ ((𝜈2 + ℓ
)
𝑝ℓ (𝜔)

)���� (3.14)

≤ exp
{(𝜈
2
+ ℓ

)
𝜓

(
𝑝ℓ (𝜔)

)}
(3.15)

≤ exp
{(𝜈
2
+ ℓ

)
𝛽

}
, (3.16)

where the last inequality follows from the fact that𝜓 is an increasing function on (0, 1), and thus

𝜓
(
𝑝ℓ (𝜔)

)
≤ 𝛽 < 0 for all ℓ ≥ 𝐿 + 1 and all 𝜔 ∈ [0,Ω].

If 𝐿 > 𝜈
2 , we define 𝑞ℓ (𝜔) := 𝜔𝑅/(2ℓ − 𝜈) and apply Siegel’s bound again to obtain����𝐽 𝜈2−ℓ (

𝜔𝑅

2

)���� = ����𝐽ℓ− 𝜈
2

((
ℓ − 𝜈

2

)
𝑞ℓ (𝜔)

)���� ≤ exp
{(
ℓ − 𝜈

2

)
𝛾

}
. (3.17)

If 𝐿 ≤ 𝜈
2 , Siegel’s bound does not apply and we use instead the simple bound

���𝐽 𝜈
2−ℓ

(
𝜔𝑅
2
) ��� ≤ 1,

which is equivalent to taking 𝛾 = 0.

All that remains is to apply a geometric series argument�����𝐽𝜈 (𝜔𝑟 ) − 𝐿−1∑︁
ℓ=0

𝐶ℓ (𝜔𝑅)𝑇2ℓ
( 𝑟
𝑅

)����� ≤ 2
∞∑︁
ℓ=𝐿

exp
{(𝜈
2
+ ℓ

)
𝛽 +

(
ℓ − 𝜈

2

)
𝛾

}
(3.18)

= 2 exp
{𝜈
2
(𝛽 − 𝛾)

} ∞∑︁
ℓ=𝐿

(
𝑒𝛽+𝛾

) ℓ
(3.19)

=
2 exp

{
𝜈
2 (𝛽 − 𝛾) + 𝐿(𝛽 + 𝛾)

}
1 − 𝑒𝛽+𝛾

(3.20)

A similar calculation can be carried out for 𝜈 odd. □
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Lemma 3.1 is rather opaque regarding the impact of the various parameters on the error

because we have not utilized any simplifying bounds on the function 𝜓 , as done in [98, Lemma

1] for large 𝜈 . However, our analysis takes into account the decay in both 𝐽 𝜈
2 +ℓ and 𝐽

𝜈
2−ℓ , thus

remaining relatively tight for small 𝜈 . It is therefore well-suited to our purposes because, given

𝑧, 𝐿 > 0, it provides a bound 𝐵 loc
𝜈,𝐿

(𝑧) on the pointwise error in approximating any block of the

matrix 𝐽𝜈 (𝜔 𝑗𝑟𝑘) for which 𝜔𝑟 ≤ 𝑧 using the 𝐿-term Wimp expansion.

This expansion is highly beneficial from a computational perspective, as it yields an analytical

rank-𝐿 approximation to any block of 𝑨 for which 𝜔 𝑗𝑟𝑘 is sufficiently small

A( 𝑗0 : 𝑗1, 𝑘0 : 𝑘1) ≈ CT⊤ (3.21)

where C ∈ R( 𝑗1− 𝑗0+1)×𝐿 and T ∈ R(𝑘1−𝑘0+1)×𝐿 with entries

C( 𝑗, ℓ) = 𝐶ℓ−1(𝜔 𝑗𝑟𝑘1) and T(𝑘, ℓ) = 𝑇2ℓ−2
(
𝑟𝑘

𝑟𝑘1

)
, (3.22)

where we have scaled 𝜔 𝑗 and 𝑟𝑘 by the largest distance 𝑟𝑘1 to ensure that the argument of the

Chebyshev polynomial is at most one. For a block ofA of size𝑚𝑏×𝑛𝑏 , the low-rank approximation

given by the Wimp expansion can be applied to a vector in O
(
𝐿(𝑚𝑏 + 𝑛𝑏)

)
time by first applying

𝑻⊤ then applying 𝑪 .

3.3.2 Hankel’s expansion

Away from the origin, 𝐽𝜈 exhibits essentially sinusoidal oscillation with period 2𝜋 . This state-

ment is made precise by Hankel’s asymptotic expansion, which states that for argument𝜔𝑟 → ∞

𝐽𝜈 (𝜔𝑟 ) ∼
√︂

2
𝜋𝜔𝑟

(
cos (𝜔𝑟 + 𝜑)

∞∑︁
ℓ=0

(−1)ℓ𝑎2ℓ (𝜈)
(𝜔𝑟 )2ℓ − sin (𝜔𝑟 + 𝜑)

∞∑︁
ℓ=0

(−1)ℓ𝑎2ℓ+1(𝜈)
(𝜔𝑟 )2ℓ+1

)
(3.23)

52



where 𝜑 := − (2𝜈+1)𝜋
4 and

𝑎ℓ (𝜈) :=
(4𝜈2 − 1) (4𝜈2 − 3) . . . (4𝜈2 − (2ℓ − 1)2)

ℓ! 8ℓ
. (3.24)

Rearranging this expansion, we obtain an expansion which can be evaluated using two NUFFTs

and diagonal scalings, andwhose remainder is bounded by the size of the first neglected terms [122,

Section 7.3]�����𝐽𝜈 (𝜔𝑟 ) −
√︂

2
𝜋

𝑀−1∑︁
ℓ=0

[
(−1)ℓ𝑎2ℓ (𝜈)
𝜔2ℓ+ 1

2
Re

(
𝑒𝑖 (𝜔𝑟+𝜑)

𝑟 2ℓ+
1
2

)
− (−1)ℓ𝑎2ℓ+1(𝜈)

𝜔2ℓ+ 3
2

Im
(
𝑒𝑖 (𝜔𝑟+𝜑)

𝑟 2ℓ+
3
2

)] �����
≤

√︂
2
𝜋

(
|𝑎2𝑀 (𝜈) |
𝑧2𝑀+ 1

2
+ |𝑎2𝑀+1(𝜈) |

𝑧2𝑀+ 3
2

)
=: 𝐵 asy

𝜈,𝑀 (𝑧) (3.25)

for all 𝜔𝑟 ≥ 𝑧.

The computational advantage of this expansion is that the 2𝑀-term asymptotic expansion of

any block of 𝑨 can be rapidly applied to a vector c using 2𝑀 Type-III NUFFTs

A( 𝑗0 : 𝑗1, 𝑘0 : 𝑘1) c ≈
√︂

2
𝜋

𝑀−1∑︁
ℓ=0

(−1)ℓ
[
𝑎2ℓ (𝜈)D

−2ℓ− 1
2

𝜔 Re
(
𝑒𝑖𝜑FD−2ℓ− 1

2
𝑟 c

)
− 𝑎2ℓ+1(𝜈)D

−2ℓ− 3
2

𝜔 Im
(
𝑒𝑖𝜑FD−2ℓ− 3

2
𝑟 c

)]
(3.26)

where F ∈ C( 𝑗1− 𝑗0+1)×(𝑘1−𝑘0+1) is the Type-III nonuniformDFTmatrixwith entries F 𝑗𝑘 := 𝑒𝑖𝜔 ( 𝑗0+𝑗−1)𝑟 (𝑘0+𝑘−1) ,

and the diagonal scalingmatrices are given byD𝜔 := diag(𝜔 𝑗0, . . . , 𝜔 𝑗1), andD𝑟 := diag(𝑟𝑘0, . . . , 𝑟𝑘1).

3.3.3 Determining order of expansions and crossover point

With these error bounds in hand, we precompute the parameters 𝑧𝑀𝜈,𝜀 and 𝐿𝑀𝜈,𝜀 for tolerances 𝜀 =

10−4, . . . , 10−15, orders 𝜈 = 1, . . . , 100, and number of asymptotic expansion terms𝑀 = 1, . . . , 20:

• 𝑧𝑀𝜈,𝜀 such that𝑀-term Hankel expansion of 𝐽𝜈 (𝜔𝑟 ) is 𝜀-accurate ∀ 𝜔𝑟 > 𝑧𝑀𝜈,𝜀 ,
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• 𝐿𝑀𝜈,𝜀 such that 𝐿𝑀𝜈,𝜀-term Wimp expansion of 𝐽𝜈 (𝜔𝑟 ) is 𝜀-accurate ∀ 𝜔𝑟 ≤ 𝑧𝑀𝜈,𝜀 .

First, the crossover points 𝑧𝑀𝜈,𝜀 are computed using Newton’s method on the function 𝜁 (𝑧) :=

𝐵 asy
𝜈,𝑀

(𝑧) − 𝜀. Then the number of local expansion terms 𝐿𝑀𝜈,𝜀 are taken to be the smallest integer

such that 𝐵 loc
𝜈,𝐿

(
𝑧𝑀𝜈,𝜀

)
< 𝜀. These tables are precomputed once when the library is installed, and

even this precomputation requires only a few seconds on a laptop.

With these tables stored, for any order 𝜈 we can look up a pair of complementary local and

asymptotic expansions with error everywhere bounded by the requested tolerance 𝜀. The only re-

maining free parameter is the number of asymptotic terms𝑀 . This parameter is selected based on

various numerical experiments which maximize speed by balancing the cost of the local, asymp-

totic, and direct evaluations. In our implementation, we use the heuristic

𝑀𝜈,𝜀 = min
(⌊
1 + 𝜈

5
−
log10(𝜀)

4

⌋
, 20

)
. (3.27)

3.4 The Nonuniform Fast Hankel Transform

We now describe our NUFHT algorithm in detail, emphasizing the process by which A is

adaptively subdivided into blocks using the results of the above error analysis.

3.4.1 Subdividing the matrix into blocks by expansion

Having established error bounds which allow us to automatically select the number of asymp-

totic terms𝑀 , local terms 𝐿, and crossover point 𝑧 given a tolerance 𝜀 and order 𝜈 , we subdivide

the matrix A into three sets of blocks, each of which can be efficiently applied to a vector as

described above:

• Local blocksℒ =
{
A( 𝑗0 : 𝑗1, 𝑘0 : 𝑘1) | 𝜔 𝑗𝑟𝑘 ≤ 𝑧 ∀ 𝑗0 ≤ 𝑗 ≤ 𝑗1, 𝑘0 ≤ 𝑘 ≤ 𝑘1

}
• Asymptotic blocks𝒜 =

{
A( 𝑗0 : 𝑗1, 𝑘0 : 𝑘1) | 𝜔 𝑗𝑟𝑘 > 𝑧 ∀ 𝑗0 ≤ 𝑗 ≤ 𝑗1, 𝑘0 ≤ 𝑘 ≤ 𝑘1

}
54



• Direct blocks𝒟 which are small enough that no fast expansion is needed

In order to determine a subdivision of A into blocks of these three types, we initialize a set of

mixed blocks ℳ = {(1 :𝑚, 1 : 𝑛)}, each of which contains a mix of local and asymptotic entries.

We then chose an index pair ( 𝑗, 𝑘) such that 𝜔 𝑗𝑟𝑘 ≈ 𝑧. This index subdivides the block into four

new sub-blocks with ( 𝑗, 𝑘) at the center, so that the upper left block can be applied using the local

expansion and is appended to ℒ, and the lower right block using the asymptotic expansion and

is appended to𝒜.

The remaining lower left and upper right blocks each still contain a mix of local and asymp-

totic entries. If they are of sufficiently small size𝑚𝑏 ×𝑛𝑏 with𝑚𝑏𝑛𝑏 < min_size— a user-defined

parameter which is taken to be 1024 by default — they can be evaluated directly and are ap-

pended to𝒟. Otherwise they are appended back toℳ, and we continue the subdivision process

recursively.

This method yields a valid partition for any choice of ( 𝑗, 𝑘), but for efficiency these indices are

chosen to maximize the number of matrix entries which can be applied using a fast expansion,

i.e. the sizes of the upper left and lower right blocks. This is done by solving the following

constrained optimization problem

( 𝑗, 𝑘) = SplitIndices(𝑟1, . . . , 𝑟𝑛, 𝜔1, . . . , 𝜔𝑚, 𝑧) (3.28)

:=



argmax
𝑗,𝑘∈Z

( 𝑗 − 𝑗0) (𝑘1 − 𝑘) + ( 𝑗1 − 𝑗) (𝑘 − 𝑘0)

subject to 𝑗0 ≤ 𝑗 ≤ 𝑗1

𝑘0 ≤ 𝑘 ≤ 𝑘1

𝜔 𝑗𝑟𝑘 ≤ 𝑧

(3.29)

This problem can be solved exactly in O( 𝑗1− 𝑗0+𝑘1−𝑘0) time. However, computing the exact opti-

mal splitting indices for every box gives a negligible speedup to the overarchingHankel transform

compared to a simpler, quasi-optimal scheme. In practice it is sufficient to choose a small number
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Algorithm 1: Block subdivision of Hankel transform matrix
1 Subdivide({𝑟𝑘}𝑛𝑘=1, {𝜔 𝑗 }

𝑚
𝑗=1, 𝑧, min_size):

2 ℒ = 𝒜 = 𝒟 = ∅
3 ℳ = {(1 :𝑚, 1 : 𝑛)}
4 whileℳ ≠ ∅ do
5 Pop a submatrix A( 𝑗0 : 𝑗1, 𝑘0 : 𝑘1) from ℳ

6 ( 𝑗, 𝑘) = SplitIndices({𝑟𝑘}𝑘1𝑘=𝑘0, {𝜔 𝑗 }
𝑗1
𝑗= 𝑗0
, 𝑧)

7 Append A( 𝑗0 : 𝑗, 𝑘0 : 𝑘) toℒ

8 Append A( 𝑗+1 : 𝑗1, 𝑘+1 : 𝑘1) to𝒜

9 Append A( 𝑗0 : 𝑗, 𝑘+1 : 𝑘1) toℳ if ( 𝑗− 𝑗0+1) (𝑘1−𝑘) > min_size else 𝒟
10 Append A( 𝑗+1 : 𝑗1, 𝑘0 : 𝑘) toℳ if ( 𝑗1− 𝑗) (𝑘1−𝑘+1) > min_size else 𝒟
11 end
12 return (ℒ,𝒜,𝒟)

of equispaced indices 𝑗 ∈ { 𝑗0, . . . , 𝑗1}, compute the corresponding 𝑘 = argmax{𝑘 | 𝑟𝑘 ≤ 𝑧
𝜔 𝑗
} for

each 𝑗 , and choose ( 𝑗, 𝑘) as the pair which minimizes the objective function of (3.29) among this

small collection.

3.4.2 Complexity analysis

We now analyze the computational complexity of the proposed approach. In order to do so,

we must first comment on the complexity of the NUFFT, which is an important subroutine in our

method. Most analysis-based NUFFT codes — including the FINUFFT library [3] which we use in

our NUFHT implementation — consist of three steps. First, delta masses centered at each non-

uniform point are convolved with a spreading function which smears them onto a fine 𝑁 -point

uniform grid. Then, a standard equispaced FFT is computed on the fine grid. Finally, a diagonal

de-convolution with the Fourier transform of the spreading function is applied to reverse the

effect of the original smearing. For a more complete description of this NUFFT method, see [3,

34, 51]. For 𝑛 points 𝑟𝑘 and𝑚 frequencies 𝜔 𝑗 , spreading the input points to a finer grid is O(𝑛),

the FFT on the finer grid is O(𝑁 log𝑁 ), and the global deconvolution at the output frequencies

is O(𝑚). For the Type-III NUFFT, the size 𝑁 of the fine grid typically scales linearly with the
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Algorithm 2: Nonuniform fast Hankel transform
1 NUFHT(𝜈, 𝜀, {𝑟𝑘}𝑛𝑘=1, {𝑐𝑘}

𝑛
𝑘=1, {𝜔 𝑗 }

𝑚
𝑗=1):

2 𝒈 = 0 ∈ C𝑚

3 Choose𝑀𝜈,𝜀 using (3.27)
4 Look up 𝐿𝑀𝜈,𝜀 and 𝑧𝑀𝜈,𝜀 from pre-computed tables
5 Set min_size
6 (ℒ,𝒜,𝒟) = Subdivide({𝑟𝑘}𝑛𝑘=1, {𝜔 𝑗 }

𝑚
𝑗=1, 𝑧

𝑀
𝜈,𝜀, min_size)

7 forℬ ∈ (ℒ,𝒜,𝒟) do
8 for A( 𝑗0 : 𝑗1, 𝑘0 : 𝑘1) ∈ ℬ do
9 𝒈( 𝑗0 : 𝑗1) += 𝑨( 𝑗0 : 𝑗1, 𝑘0 : 𝑘1) 𝒄 (𝑘0 : 𝑘1) using expansion (3.21) forℒ, (3.26)

for 𝒜, or direct evaluation for𝒟
10 end
11 end
12 return 𝒈

space-frequency product 𝑝 := (𝜔𝑚 −𝜔1) (𝑟𝑛 − 𝑟1) [3, 51]. Therefore the total cost of the NUFFT is

O(𝑛 +𝑚 + 𝑝 log𝑝). Applying this fact in each asymptotic block in the Hankel transform matrix,

and adding the cost of applying local and direct blocks, we can now analyze the complexity of

the entire NUFHT method shown in Algorithm 2.

Theorem 3.2. Take 0 ≤ 𝜔1 < · · · < 𝜔𝑚 ≤ Ω and 0 ≤ 𝑟1 < · · · < 𝑟𝑛 ≤ 𝑅 and define the space-

frequency product 𝑝 := Ω𝑅. Then the complexity of computing the NUFHT of order 𝜈 to tolerance 𝜀

using Algorithm 2 is

O
(
(𝐿 +𝑀) (𝑚 + 𝑛) logmin(𝑛,𝑚) +𝑀𝑝 log𝑝

)
,

where 𝐿 and𝑀 are the number of local and asymptotic terms respectively chosen according to 𝜈 and

𝜀.

Proof. For notational clarity we suppress the dependence of 𝑧𝑀𝜈,𝜀 on its parameters and simply

denote it as 𝑧. If 𝜔 𝑗𝑟𝑘 ≤ 𝑧 for all 𝑗 = 1, . . . , 𝑛 and 𝑘 = 1, . . . ,𝑚 then only the 𝐿-term low-rank local

expansion is used, which can be applied in O(𝐿(𝑚+𝑛)) time. If instead𝜔 𝑗𝑟𝑘 > 𝑧 everywhere, then

only the 𝑀-term asymptotic expansion is used, which can be applied using the Type-III NUFFT

in O(𝑀 (𝑚 + 𝑛 + 𝑝 log𝑝)) complexity.

57



Otherwise consider the case where A contains both local and asymptotic entries. First, note

that the number of levels 𝑁level scales like O(logmin(𝑛,𝑚)). The cost of determining the split-

ting indices ( 𝑗, 𝑘) for each box A( 𝑗0 : 𝑗1, 𝑘0 : 𝑘1) is O( 𝑗1 − 𝑗0 + 𝑘1 − 𝑘0), and thus the total cost

of subdivision at each level is O(𝑚 + 𝑛). Therefore the total cost of subdividing A is O((𝑚 +

𝑛) logmin(𝑛,𝑚)).

Now, without loss of generality, assume 𝜔1 ≤ 𝑧/𝑟𝑛 < 𝜔2 and 𝑟1 ≤ 𝑧/𝜔𝑚 < 𝑟2. If this were

not the case, we would have blocks which can be evaluated using a single expansion as described

above without affecting the complexity. After step ℓ of subdividing every mixed block, we obtain

2ℓ new mixed blocks, 2ℓ−1 new local blocks, and 2ℓ−1 new asymptotic blocks. Let the local blocks

be of size𝑚(loc)
ℓ,𝑏

× 𝑛(loc)
ℓ,𝑏

for 𝑏 = 1, . . . , 2ℓ−1. Then,

2ℓ−1∑︁
𝑏=1

𝑚
(loc)
ℓ,𝑏

≤ 𝑚, and
2ℓ−1∑︁
𝑏=1

𝑛
(loc)
ℓ,𝑏

≤ 𝑛. (3.30)

An analogous fact holds for the asymptotic blocks.

Therefore, the total cost of local evaluation is

𝑁level∑︁
ℓ=1

2ℓ−1∑︁
𝑏=1

O
(
𝐿

(
𝑚

(loc)
ℓ,𝑏

+ 𝑛(loc)
ℓ,𝑏

))
=

𝑁level∑︁
ℓ=1

O(𝐿(𝑚 + 𝑛))

= O
(
𝐿(𝑚 + 𝑛) logmin(𝑛,𝑚)

)
.

(3.31)

Let 𝑝ℓ,𝑏 be the space-frequency product of box 𝑏 at level ℓ . The total space frequency product

𝑝 is the area of the rectangle 𝑅 := [𝜔1, 𝜔𝑚] × [𝑟1, 𝑟𝑛], and all asymptotic boxes occupy disjoint

sub-rectangles of 𝑅. Therefore the sum of their areas is bounded by the area of 𝑅, so that

𝑁level∑︁
ℓ=1

2ℓ−1∑︁
𝑏=1

𝑝ℓ,𝑏 ≤ 𝑝.

58



Then by Hölder’s inequality we obtain

𝑁level∑︁
ℓ=1

2ℓ−1∑︁
𝑏=1

𝑝ℓ,𝑏 log𝑝ℓ,𝑏 ≤ ©­«
𝑁level∑︁
ℓ=1

2ℓ−1∑︁
𝑏=1

𝑝ℓ,𝑏
ª®¬
(
max
ℓ,𝑏

log𝑝ℓ,𝑏
)
≤ 𝑝 log𝑝. (3.32)

The total cost of asymptotic evaluation via the Type-III NUFFT is therefore

𝑁level∑︁
ℓ=1

2ℓ−1∑︁
𝑏=1

O
(
𝑀

(
𝑚

(asy)
ℓ,𝑏

+ 𝑛(asy)
ℓ,𝑏

+ 𝑝 (asy)
ℓ,𝑏

log𝑝 (asy)
ℓ,𝑏

))
=

𝑁level∑︁
ℓ=1

O(𝑀 (𝑚 + 𝑛)) +
𝑁level∑︁
ℓ=1

2ℓ−1∑︁
𝑏=1

O
(
𝑀

(
𝑝
(asy)
ℓ,𝑏

log𝑝 (asy)
ℓ,𝑏

))
= O

(
𝑀 (𝑚 + 𝑛) logmin(𝑛,𝑚) +𝑀𝑝 log𝑝

)
.

(3.33)

We subdivide until all direct blocks are all of size𝑚𝑏 × 𝑛𝑏 with𝑚𝑏𝑛𝑏 = O(1). Thus the cost of

computing the dense matvec with each direct block is O(1), and the number of direct blocks is

O(𝑚 + 𝑛). Therefore the total direct evaluation cost is O(𝑚 + 𝑛). Summing the cost of matrix

subdivision, as well as local, asymptotic, and direct evaluation gives the result. □

In typical applications the maximum point 𝑟𝑛 is fixed by, for example, the support of the func-

tion 𝑓 whose Fourier transform is desired, and the maximum frequency 𝜔𝑚 at which the trans-

form is computed grows linearly with 𝑛. The following corollary studies this common scenario,

which includes Schlömilch expansions and Fourier-Bessel series. For notational conciseness, we

consider the number of terms 𝐿 and𝑀 in each expansion as constants here.

Corollary 3.3. Take 0 ≤ 𝜔1 < · · · < 𝜔𝑛 and 0 ≤ 𝑟1 < · · · < 𝑟𝑛 such that the space-frequency

product𝜔𝑛𝑟𝑛 = O(𝑛). Then the complexity of computing the NUFHT using Algorithm 2 isO(𝑛 log𝑛).

Remark 3.1. If 𝑟1 ≫ 0, the space-frequency product 𝑝 = Ω𝑅 may be large while the recentered

space-frequency product 𝑝 := Ω(𝑟𝑛 − 𝑟1) is small. One can then use the Neumann addition
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formula [90, p. 10.23.2]

𝐽𝜈 (𝜔 𝑗𝑟𝑘) =
∞∑︁

ℓ=−∞
𝐽𝜈−ℓ (𝜔 𝑗𝑟1) 𝐽ℓ (𝜔 𝑗𝑟𝑘 − 𝜔 𝑗𝑟1) (3.34)

so that the Hankel transform can be approximated by

𝑚∑︁
𝑘=1

𝑐𝑘 𝐽𝜈 (𝜔 𝑗𝑟𝑘) ≈
𝑁∑︁

ℓ=−𝑁
𝐽𝜈−ℓ (𝜔 𝑗𝑟1)

𝑚∑︁
𝑘=1

𝑐𝑘 𝐽ℓ

(
𝜔 𝑗 (𝑟𝑘 − 𝑟1)

)
. (3.35)

Each inner sum above can be computed with an NUFHT of order ℓ with space-frequency product

𝑝 ≪ 𝑝 . The outer sum converges rapidly in 𝑁 for 𝑁 > 𝑝 , and thus the O(𝑝2 log𝑝) cost of

evaluating (3.35) may be smaller than the O(𝑝 log𝑝) cost of using Algorithm 2 directly. The same

procedure can be used in 𝜔 if 𝜔1 ≫ 0.

Remark 3.2. There exist butterfly factorization-based NUFFT methods that could be used to re-

move the dependence on the space-frequency product 𝑝 in Theorem 3.2 using linear algebraic

approximations [94]. However, we find that the asymptotic dependence on 𝑝 is generally seen

only in pathological cases, and thus choose to avoid the precomputations and memory require-

ments associated with butterfly methods.

3.5 Numerical experiments

In the following section, we perform a number of numerical experiments to validate the ac-

curacy and complexity of our method. We close with two applications from Fourier analysis and

numerical PDEs.
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O(𝑛) O(𝑚) O(𝑝 log𝑝)

Figure 3.3: Scaling with 𝑛,𝑚, and 𝑝 respectively, with the other variables held constant.

3.5.1 Comparison to direct evaluation

We start by empirically verifying the error analysis in Sections 3.3.1 and 3.3.2, and the asymp-

totic scaling analysis in Section 3.4.2 by comparing to direct evaluation of the Hankel transform.

3.5.1.1 Asymptotic scaling

In order to study the impact of each of the relevant parameters in the scaling analysis of Theo-

rem 3.2 independently, we take 𝑛 equispaced points 𝑟𝑘 in the interval [0,
√
105] and𝑚 equispaced

frequencies 𝜔 𝑗 in the interval [0, 𝑝/
√
105]. First, we fix 𝑚 = 103 and 𝑝 = 105 while increasing

𝑛. Then, we fix 𝑛 = 103 and 𝑝 = 105, this time increasing 𝑚. Finally, we fix both 𝑛 = 𝑚 = 103

while increasing 𝑝 . Figure 3.3 shows the CPU time for the NUFHT as well as for direct sum-

mation in each of these scenarios. We observe the linear or quasilinear scaling expected from

Theorem 3.2 with each of 𝑛,𝑚, and 𝑝 . Note in particular that the NUFHT scales with 𝑝 while

direct summation does not. Therefore, if a DHT is desired with relatively few points with a very

large space-frequency product, direct summation may give superior performance, although such

circumstances are rare in practice.

Next, we study the more typical scenario where the space-frequency product 𝑝 grows linearly

with 𝑛, as discussed in Corollary 3.3. Here we study two cases. First, we consider the Fourier-

Bessel expansion where 𝜔 𝑗 = 𝜉𝜈, 𝑗 and 𝑟𝑘 = 𝜉𝜈,𝑘/𝜉𝜈,𝑛+1 with 𝑛 = 𝑚. This is the direct analogue of
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the discrete Fourier transform as the points and frequencies are the scaled roots of the basis, and

the resulting points and frequencies are quasi-equispaced for small to moderate 𝜈 .

We also consider the case of exponentially distributed points and frequencies 𝜔 𝑗 = 𝑟 𝑗 =

10log10 ( 𝑗)−log10 (𝑛)/2 with 𝑛 =𝑚. This is a somewhat pathological worst case scenario for our algo-

rithm, as the simple calculation√︂
Ω𝑧

𝑅
= argmax

𝑧
𝑅
≤𝜔≤Ω

(Ω − 𝜔)
(
𝑅 − 𝑧

𝜔

)
(3.36)

shows that if we subdivide a block with space frequency product Ω𝑅 at a point (𝜔, 𝑟 ) which lies

on the curve 𝜔𝑟 = 𝑧, then the largest possible space-frequency product 𝑝 for the resulting lower

right asymptotic block is achieved by taking 𝜔 to be the mid-point of [𝑧/𝑅,Ω] on a log scale.

In other words, points and frequencies which are exponentially distributed result in the highest

possible space-frequency product 𝑝 for every asymptotic block at every level. From Theorem 3.2,

maximizing 𝑝 drives the cost of the NUFHT. This distribution of points and frequencies is also

challenging because it leads to equally-sized square blocks at every level, which guarantees that

all blocks are subdivided the maximum number of times before yielding sufficiently small direct

blocks.

Figure 3.4 shows the CPU time needed to evaluate the NUFHT in the Fourier-Bessel and

exponentially-distributed cases with 𝜈 = 0 and 𝜀 = 10−8. Both cases eventually demonstrate the

expected O(𝑛 log𝑛) scaling. As a result of the challenges just discussed for the exponentially-

distributed case, its runtime is up to an order of magnitude slower than the Fourier-Bessel series.

3.5.1.2 Impact of the order and tolerance on runtime

As the order 𝜈 increases or the tolerance 𝜀 decreases, the number of necessary terms 𝐿 and

𝑀 in the local and asymptotic expansions, respectively, both grow. From Theorem 3.2, we expect

the runtime to grow linearly with 𝐿 +𝑀 . Figure 3.4 shows the runtime of our method for various
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O(𝑛 log𝑛)

O
(
𝑛2

)

Figure 3.4: Scaling with 𝑛 for 𝑝 = O(𝑛) test cases. In the first plot, we fix 𝜈 = 0, 𝜀 = 10−8 and time the
NUFHT for both the Fourier-Bessel and exponentially distributed cases. In the second and third plots, we
consider the Fourier-Bessel series only, and fix one of the parameters 𝜈 = 0 and 𝜀 = 10−8 while varying
the other. The timings of direct summation and Fourier-Bessel series from the first plot are repeated in
the other two plots for reference.

𝜀 with 𝜈 = 0 held constant, as well as for multiple 𝜈 with 𝜀 = 10−8 fixed. The O(𝑛 log𝑛) scaling of

the algorithm is similar in all cases, while the prefactors vary; a transform with 𝜀 = 10−15 is about

an order of magnitude slower than using 𝜀 = 10−4, and an order 𝜈 = 100 transform is almost two

orders of magnitude slower than the order 𝜈 = 0 equivalent.

3.5.1.3 Approximation error

Finally, we study the relative error in the output g as a function of the desired tolerance 𝜀.

To do this, we fix 𝑛 and form a sparse vector f ∈ R𝑛 with 1000 nonzero entries whose indices

are selected at random and whose values are independent standard Gaussian. We evaluate the

Fourier-Bessel series using the NUFHT with the full vector f as input, and denote the output as

g̃. We then use direct summation on only the nonzero entries to generate a reference result g.

Figure 3.5 shows the 2-norm relative error ∥g − g̃∥2 /∥g∥2 between the NUFHT and the reference.

For small transforms with 𝑛 = 103, the relative error demonstrates excellent agreement with the

tolerance 𝜀 down to 𝜀 = 10−14 or so. This suggests that the analysis used in Section 3.3 to deter-

mine the necessary number of local and asymptotic terms is fairly tight. For larger transforms,

however, the error saturates, and regardless of the tolerance 𝜀 our method gives at most 9 digits
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Figure 3.5: Relative 2-norm error ∥g − g̃∥2 /∥g∥2 as a function of tolerance 𝜀 for a NUFHT of order 𝜈 = 0
for various 𝑛.

of accuracy for transforms of size 𝑛 = 107. This is a well-known limitation of existing NUFFT

methods, for which the error generally scales like 𝑛 times machine precision [3, Remark 9].

3.5.2 Computing Fourier transforms of radial functions

For radial functions 𝑓 (𝒓) = 𝑓 (∥𝒓 ∥) in R𝑑 , one can integrate out the radial variables analyti-

cally, reducing the 𝑑-dimensional Fourier integral to a single Hankel transform

𝑓 (𝝎) =
∫
R𝑑

𝑓 (∥𝒓 ∥) 𝑒𝑖𝝎⊤𝒓 d𝒓 =
(2𝜋) 𝑑2

𝜔
𝑑
2−1

∫ ∞

0
𝑓 (𝑟 ) 𝐽𝑑

2−1
(𝜔𝑟 ) 𝑟 𝑑

2 d𝑟 . (3.37)

As discussed in Chapter 2, this situation is of particular relevance in spatial statistics and kernel

learning problems (with the roles of 𝑟 and 𝜔 reversed) [63, 97, 126]. We consider the isotropic

“singular Matérn” model proposed in [96] and fitted in Chapter 2, which we parameterize in two

dimensions as

𝑓 (𝒓) := ∥𝒓 ∥−𝛼 (𝜌2 + ∥𝒓 ∥2)−𝜈−1 =: |𝑟 |−𝛼 𝑓0(𝑟 ) (3.38)

The parameters 𝜌, 𝜈, and 𝛼 control the lengthscale, smoothness, and degree of “long memory” (i.e.

slow decay in 𝑓 ) respectively. The bounds 0 ≤ 𝛼 < 2 and 𝜈 > −𝛼
2 guarantee that 𝑓 is integrable.
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This function 𝑓 lacks a closed form Fourier transform which can be simply and stably evaluated,

making numerical quadrature a promising approach, as illustrated in one dimension in [4].

We take 𝛼 = 1.4, 𝜌 = 0.01, 𝜈 = 2 so that we can consider 𝑓 to be compactly supported on

[0, 1] up to tolerance 𝜀 = 10−8. We then compare two methods of computing 𝑓 . First, we use a

Gauss-Jacobi quadrature rule on [0, 1] with nodes 𝑟𝑘 and weights 𝑤𝑘 . We utilize the NUFHT to

compute the resulting sum

𝑓 (𝜔) = 2𝜋
∫ 1

0
𝑟−𝛼 𝑓0(𝑟 ) 𝐽0(𝜔𝑟 ) d𝑟

≈ 2𝜋
𝑛∑︁
𝑘=1

𝑤𝑘 𝑓0(𝑟𝑘) 𝐽0(𝜔𝑟𝑘)
(3.39)

doubling the number of nodes𝑚 until the error in the computed integral is less than 𝜀. Second,

we build a two-dimensional quadrature rule in polar coordinates, using the same𝑚-point Gauss-

Jacobi rule in 𝑟 and a 𝑡𝑘-node trapezoidal rule in 𝜃 on each circle of radius 𝑟𝑘 . We double the

number of trapezoidal nodes 𝑡𝑘 in each circle until the error in the corresponding radial integral

is less than 𝜀. We then utilize the 2D NUFFT to compute the resulting double sum

𝑓 (𝜔) = 1
4𝜋2

∫ 2𝜋

0

∫ 1

0
𝑟−𝛼 𝑓0(𝑟 ) 𝑒−𝑖𝜔𝑟 cos𝜃 d𝑟 d𝜃 (3.40)

≈ 1
4𝜋2

𝑛∑︁
𝑘=1

𝑤𝑘 𝑓0(𝑟𝑘)
2𝜋
𝑡𝑘

𝑡𝑘∑︁
𝑠=1

exp
{
−𝑖𝜔𝑟𝑘 cos

(
2𝜋𝑠
𝑡𝑘

)}
. (3.41)

For bothmethods, we use tolerance 𝜀 = 10−8 and evaluate the Fourier transform 𝑓 at𝑚 equispaced

points 𝜔 𝑗 ∈ [0, 𝜔max].

If only low frequencies 𝜔 are desired, e.g. 𝜔max = 64, the integrands are only mildly oscilla-

tory and few trapezoidal nodes are required. In combination with the relative ease of amortizing

costs in the NUFFT, the two-dimensional transform is often faster than the NUFHT. However, for

larger 𝜔max the integrands become more oscillatory, and in two dimensions 𝑛 = O(𝜔2
max) nodes
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log2𝜔max

Figure 3.6: Example two-dimensional quadrature nodes for the NUFFT, with one-dimensional radial
Gauss-Legendre quadrature on [0, 1] for the NUFHT emphasized. Runtime comparison between NUFHT
and 2D NUFFT for various choices of the maximum frequency 𝜔max and the number of evaluation points
𝑛. Solid lines indicate the NUFHT, and the corresponding dashed lines indicate the 2D NUFFT.

are needed to resolve these oscillations. Therefore theO(𝑛) spreading step in the NUFFT becomes

prohibitively expensive. However, by using radial symmetry to reduce to a one-dimensional in-

tegral, the NUFHT requires only O(𝜔max) quadrature nodes, avoiding the curse of dimension-

ality. Figure 3.6 shows an example quadrature and runtimes for both the NUFFT and NUFHT

approaches. Note that for 𝜔max = 215 the 2D NUFFT is orders of magnitude slower than the

NUFHT for most 𝑚, and for even larger 𝜔max the quadratic scaling of the 2D NUFFT with fre-

quency makes the computation intractable on a laptop, while the NUFHT’s linear scaling with

frequency allows evaluation of the Fourier transform at significantly higher frequencies at an

only moderately increased cost.

3.5.3 A Helmholtz solver using Fourier-Bessel expansions

Finally, we demonstrate the application of the nonuniform Hankel transform to solving par-

tial differential equations on the disk using Fourier-Bessel expansions. Consider the following
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inhomogeneous Helmholtz problem on the unit disk 𝐷

(Δ + 𝜅2)𝑢 (𝑟, 𝜃 ) = 𝑓 (𝑟, 𝜃 ), for 𝑟 ∈ [0, 1), 𝜃 ∈ [0, 2𝜋),

𝑢 (1, 𝜃 ) = 0 for 𝜃 ∈ [0, 2𝜋).
(3.42)

Note that the functions 𝜓 𝑗ℓ (𝑟, 𝜃 ) := 𝐽ℓ (𝜉ℓ, 𝑗𝑟 )𝑒𝑖ℓ𝜃 are the eigenfunctions of the Laplacian on the

unit disk with homogeneous Dirichlet boundary condition, so that

Δ𝜓 𝑗ℓ (𝑟, 𝜃 ) = 𝜆 𝑗ℓ𝜓 𝑗ℓ (𝑟, 𝜃 ), (3.43)

where 𝜆 𝑗ℓ = −𝜉2ℓ, 𝑗 [18, 122]. Therefore, writing the forcing function 𝑓 and solution 𝑢 in terms of

their respective Fourier-Bessel expansions

𝑓 (𝑟, 𝜃 ) =
∞∑︁

ℓ=−∞

∞∑︁
𝑗=1

𝛼 𝑗ℓ 𝐽ℓ (𝜉ℓ, 𝑗𝑟 ) 𝑒𝑖ℓ𝜃 , 𝑢 (𝑟, 𝜃 ) =
∞∑︁

ℓ=−∞

∞∑︁
𝑗=1

𝛽 𝑗ℓ 𝐽ℓ (𝜉ℓ, 𝑗𝑟 ) 𝑒𝑖ℓ𝜃 (3.44)

decouples (3.42) into a system of diagonal equations resulting in an explicit formula for the coef-

ficients 𝛽 𝑗ℓ :

𝛽 𝑗ℓ =
𝛼 𝑗ℓ

𝜆 𝑗ℓ + 𝜅2
. (3.45)

Due to the orthogonality of the Bessel functions 𝐽ℓ , the Fourier-Bessel coefficients of the forcing 𝑓

can be computed as:

𝛼 𝑗ℓ =
2

𝐽ℓ+1(𝜉ℓ, 𝑗 )2
∫ 2𝜋

0

∫ 1

0
𝑓 (𝑟, 𝜃 ) 𝐽ℓ (𝜉ℓ, 𝑗𝑟 ) 𝑒−𝑖ℓ𝜃 𝑟 d𝑟 d𝜃, (3.46)

and the Fourier-Bessel expansion of the solution 𝑢 can then be written explicitly

𝑢 (𝑟, 𝜃 ) =
∞∑︁

ℓ=−∞

∞∑︁
𝑗=1

𝛼 𝑗ℓ

𝜆 𝑗ℓ + 𝜅2
𝐽ℓ (𝜉ℓ, 𝑗𝑟 ) 𝑒𝑖ℓ𝜃 . (3.47)
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By diagonalizing the Laplacian, this Fourier-Bessel solver thus provides a direct analogue in the

Dirichlet disk setting of spectral methods on a periodic rectangle using bivariate Fourier expan-

sions, and inherits many of the merits of spectral methods. First, if 𝑓 and all its derivatives go to

zero at 𝑟 = 1 and 𝑓 is smooth in the interior of 𝐷 , then
��𝛼 𝑗ℓ �� → 0 exponentially fast in both 𝑗 and

ℓ [18]. In addition, solutions for arbitrary 𝜅 can be evaluated without additional computations

involving 𝑓 , assuming that 𝜅2 is not itself a Dirichlet eigenvalue of the Laplacian on 𝐷 .

To compute the Fourier-Bessel coefficients 𝛼 𝑗ℓ of 𝑓 using (3.46), we use an 𝑚-point Gauss-

Legendre rule in 𝑟 and a 𝑡-point trapezoidal rule in 𝜃 . We iteratively double the number of nodes

in each rule until the relative norm difference in computed coefficients between iterations is less

than 𝜀 (controlling the discretization error) and the relative norm of the coefficients appended

in the last iteration is less than 𝜀 (controlling the truncation error). Computing all 𝛼 𝑗ℓ at each

iteration requires 𝑡 NUFHTs of size 𝑚 and 𝑚 FFTs of size 𝑡 , resulting in O(𝑡𝑚 log𝑚 +𝑚𝑡 log 𝑡)

total complexity. Figure 3.7 shows an example random forcing 𝑓 , the magnitude of its Fourier-

Bessel coefficients𝛼 𝑗ℓ , and the corresponding solution𝑢 to the Helmholtz equation (3.42) compute

to relative precision 𝜀 = 10−8.

This approach does, however, have two main limitations. First is that the coefficients of

𝑓 decrease only algebraically in 𝑗 if 𝑓 has nonzero derivatives at 𝑟 = 1. More precisely, if

Δ𝑞 𝑓 (𝑟 ) |𝑟=1 = 0 for all 0 ≤ 𝑞 ≤ 𝑝 − 1, then
��𝛼 𝑗ℓ �� ∼ 𝑗−2𝑝−

1
2 , with exponential convergence only

possible if Δ𝑞 𝑓 (𝑟 ) |𝑟=1 = 0 for all integer 𝑞 [18]. This is a fundamental property of the Fourier-

Bessel expansion, and does not depend on the numerical method used to evaluate the Hankel

transform. The second limitation is the increase in computational cost of our NUFHT with the

order ℓ , as demonstrated in Figure 3.4. As 𝛼 𝑗ℓ decrease spectrally in ℓ for smooth functions 𝑓 ,

very large ℓ are not often needed. However, as in any spectral method, functions with sharp

features or discontinuous derivatives will yield only algebraic decay in ℓ , requiring more Fourier

bases. In such cases the corresponding high order NUFHTs become intractable using the method

described here.
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𝑓 𝑢
log10

��𝛼 𝑗ℓ ��

Figure 3.7: Forcing 𝑓 , solution𝑢, and log magnitude of Fourier-Bessel expansion coefficients 𝛼 𝑗 ℓ for (3.42)
with 𝜅 = 25.

3.6 Discussion

In this chapter we have presented a fast algorithm for computing discrete Hankel trans-

forms of moderate orders from 𝑛 nonuniform points to 𝑚 nonuniform frequencies in O
(
(𝑚 +

𝑛) logmin(𝑛,𝑚)
)
operations. The algorithm relies on a careful space-frequency analysis of the

Bessel function kernel, judicious use of small-argument series expansions and large-argument

asymptotic expansions, as well as a small number of direct calculations. The algorithm makes no

assumptions on the distribution of points in space and frequency — it applies to the fully nonuni-

form case — and can be used for Hankel transforms of higher order with a modest increase in

computational cost. More importantly, the algorithm does not require any precomputation, in

contrast to algorithms based on butterfly factorizations of the Hankel transform matrix. Signifi-

cant speedups over the direct calculation have been demonstrated, as well as asymptotic scaling

of the computational complexity. An implementation of the algorithm of this chapter is available

as an open-source Julia package at github.com/pbeckman/FastHankelTransform.jl.

In order to efficiently extend our algorithm to compute arbitrarily high-order Hankel trans-

formswhich are needed for higher-order Fourier-Bessel expansions and in various high-dimensional

statistical settings [79, 87], alternative expansions and asymptotics of 𝐽𝜈 need to be used or de-
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rived. This is the focus of ongoing research.
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4 | A butterfly-accelerated manifold

harmonic transform

4.1 Introduction

In this chapter, we pivot away from the entry evaluation schemes of Chapters 2 and 3, and

develop a “Fourier feature”-type method for GRFs on compact manifolds. In order to motivate the

transform that we will study in this chapter, consider the two-dimensional type-II nonuniform

Fourier transform

𝑔(𝒙 𝑗 ) =
∑︁

𝒌∈[−
√
𝑚

2 ,
√
𝑚

2 −1]2
𝑓𝒌 𝑒

𝑖𝒌⊤𝒙 𝑗 , for 𝑗 = 1, . . . , 𝑛 (4.1)

from 𝑚 uniform frequencies 𝒌 to 𝑛 nonuniform spatial locations 𝒙 𝑗 ∈ [−𝜋, 𝜋]2. Noting that

𝑒𝑖𝒌
⊤𝒙 for 𝒌 ∈ Z2 are exactly the eigenfunctions of the Laplacian Δ on [−𝜋, 𝜋]2 under periodic

boundary conditions, it is natural to consider analogous Fourier-like transforms which can be

used in spectral methods and to perform harmonic analysis on domains other than the flat square.

For a general compact manifold M with or without a boundary 𝜕M, consider the Laplace-
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Figure 4.1: Eigenfunctions 𝜑𝑘 of the Laplacian on a cow manifold for 𝑘 = 2, 4, 8, 78, 340, 1350.

Beltrami eigenproblem


ΔM𝜑 = 𝜆𝜑, in M,

ℎ

(
𝜑,
𝜕𝜑

𝜕𝑛

)
= 0 on 𝜕M,

(4.2)

where ℎ(𝜑, 𝜕𝜑
𝜕𝑛
) represents any suitable set of boundary conditions, e.g. Dirichlet, Neumann,

Robin, or a mixture thereof. This eigenproblem yields a set of nonnegative eigenvalues 0 ≤ 𝜆1 ≤

𝜆2 ≤ . . . whose corresponding eigenfunctions {𝜑𝑘}∞𝑘=1 form an orthonormal basis for 𝐿2(M) [23].

A generalization of the Fourier transform to the manifold M is then given by the manifold har-

monic transform (MHT)

𝑔(𝒙 𝑗 ) =
𝑚∑︁
𝑘=1

𝑓𝑘𝜑𝑘 (𝒙 𝑗 ), for 𝑗 = 1, . . . , 𝑛, (4.3)

which we write in the equivalent matrix form g = Φf where Φ ∈ C𝑛×𝑚,Φ 𝑗𝑘 = 𝜑𝑘 (𝒙 𝑗 ), and

g 𝑗 = 𝑔(𝒙 𝑗 ). Figure 4.1 shows numerically computed Laplace-Beltrami eigenfunctions 𝜑𝑘 on an

example manifoldM, each of which serves as a column of the matrix Φ. Note that as we increase

the order𝑘 , the eigenfunctions exhibit oscillations on decreasing lengthscales, providing a natural

multiscale Fourier-like basis onM.

The MHT and related computations appear in applications to computer graphics and mesh-

ing [72, 95, 99, 104, 120]; surface partial differential equations (PDEs) [16, 35]; statistics [17, 70]; as
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well as data assimilation and kernel learning settings [8, 46]. A number of compressed represen-

tations for the lowest Laplace-Beltrami eigenfunctions have been proposed in the literature [10,

27, 85]. However, these works are focused mainly on scalably computing these eigenfunctions,

and do not explicitly investigate the possibility of a fast transform for rapidly evaluating linear

combinations of many eigenfunctions {𝜑𝑘}𝑚𝑘=1 at a large number of target points {𝒙 𝑗 }𝑛𝑗=1 ⊂ M.

For other oscillatory integral transforms such as the nonuniform Fourier, Hankel, and spher-

ical harmonic transforms, one can leverage various symmetries and analytical expansions of the

eigenfunctions 𝜑𝑘 to develop fast algorithms [5, 34, 82, 117]. However, no such analytical struc-

ture is available a priori for the MHT on general manifolds M. Instead, we must rely on purely

linear-algebraic structure to compress the matrix Φ. One such compressed linear-algebraic rep-

resentation of oscillatory operators is given by the butterfly factorization [75, 89], which we apply

and analyze here in the MHT context. The butterfly factorization is a generalization of the hier-

archical algebraic structure of the FFT algorithm — in which interactions between each level are

exactly rank-one operations — to more general operators in which interactions between scales

have small 𝜀-rank. Butterfly factorizations have been successfully applied to compress Fourier in-

tegral operators [21, 74, 75], Hankel transforms [75, 89], and spherical harmonic transforms [103,

119], among others.

In this chapter, we introduce a discretization-agnostic butterfly-accelerated manifold har-

monic transform (BA-MHT) which reduces the cost to store and apply the MHT on a 2-manifold

M ⊂ R3 from O(𝑛𝑚) to O(𝑛 +𝑚3/2) after an O(𝑛𝑚) precomputation to evaluate and compress

the relevant eigenfunctions.

Notation Throughout this chapter, we use Golub and Van Loan [48] i.e. MATLAB-style sub-

matrix notation, so that given a matrix Φ ∈ C𝑛×𝑚 and index sets 𝛾 := [ 𝑗1, 𝑗2, . . . , 𝑗𝑝] and 𝜎 :=
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Level 0 Level 1 Level 2 Level 3

Figure 4.2: Row tree, column tree, and resulting complementary blocks of Φ at levels ℓ = 0, . . . , 3.

[𝑘1, 𝑘2, . . . , 𝑘𝑞], we denote the corresponding 𝑝 × 𝑞 submatrix by

Φ(𝛾, 𝜎) =


Φ( 𝑗1, 𝑘1) · · · Φ( 𝑗1, 𝑘𝑞)

...
. . .

...

Φ( 𝑗𝑝, 𝑘1) · · · Φ( 𝑗𝑝, 𝑘𝑞)


. (4.4)

We denote Φ(𝛾, :) = Φ(𝛾, [1, . . . ,𝑚]) and Φ(:, 𝜎) = Φ( [1, . . . , 𝑛], 𝜎). We use |𝛾 | = 𝑝 to denote the

size of an index set.

4.2 The butterfly factorization

Discretizing oscillatory operators such as the Fourier transform generally results in full-rank

matrix representations Φ. Nevertheless, many such matrices exhibit a complementary low-rank

property, so that all blocksΦ(𝛾, 𝜎)with the same number of entries |𝛾 |·|𝜎 | have constant or nearly-

constant ranks. Butterfly algorithms result from building trees on the column and row indices

and considering blocks of the matrix with the corresponding indices. One can then move down

the row tree (halving the number of rows) and simultaneously move up the column tree (doubling

the number of columns). The number of block entries at each level is thus held constant, and the

complementary low-rank property can be exploited in a nested fashion on each level. Figure 4.2

provides a graphical representation of the row and column trees and the corresponding low-rank

matrix blocks at each level.
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We now describe the butterfly factorization algorithm of [89]. To align with Fourier transform

and MHT context of Section 4.1, we refer to the first dimension (the row index) as representing

space, and the second dimension (the column index) as representing frequency. We assume binary

trees𝑇𝑥 and𝑇𝜆 have been constructed whose nodes are index sets on the rows and columns of Φ

respectively. The precise choice of trees will affect the level of resulting compression, but does

not alter the algorithm, and this construction generalizes in a straightforward way to two or three

dimensions using quadtrees or octrees.

To begin, at level ℓ = 0 we compute a low-rank factorization of the block column

Φ(:, 𝜎) = U:𝜎V∗
:𝜎 (4.5)

for each leaf node 𝜎 in the frequency tree. We note that the butterfly algorithm is agnostic to the

particular type of low-rank factorization used here and throughout, and many are suitable, e.g.

SVD, QR, interpolative decomposition, etc.

At levels ℓ = 1, . . . , 𝐿 − 1 we use the low-rank factors from the previous level to compute a

low-rank factorization of each complementary block at the current level. Let 𝛾 be a node at level

𝐿 − ℓ of the space tree with children 𝛼, 𝛽 . Let 𝜎, 𝜏 be nodes at level ℓ of the frequency tree with

parent 𝜐.

Space Frequency

𝛾

𝛼 𝛽

𝜐

𝜎 𝜏Level ℓ

Level 𝐿 − ℓ

Assume we have computed low-rank factorizations of Φ(𝛾, 𝜎) and Φ(𝛾, 𝜏). We can then move

down the space tree and up the frequency tree one level, writingΦ(𝛼,𝜐) in terms of the previously
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computed factors

Φ(𝛼,𝜐) =
[
Φ(𝛾, 𝜎) Φ(𝛾, 𝜏)

]
(𝛼, :) (4.6)

=

[
U𝛾𝜎V∗

𝛾𝜎 U𝛾𝜏V∗
𝛾𝜏

]
(𝛼, :) (4.7)

=

[
U𝛾𝜎 (𝛼, :) U𝛾𝜏 (𝛼, :)

] 
V∗
𝛾𝜎

V∗
𝛾𝜏

 . (4.8)

We then compute a low-rank factorization of the first matrix above

[
U𝛾𝜎 (𝛼, :) U𝛾𝜏 (𝛼, :)

]
= U𝛼𝜐R𝛼𝜐 . (4.9)

This yields a low-rank factorization of the desired matrix block

Φ(𝛼,𝜐) = U𝛼𝜐R𝛼𝜐


V∗
𝛾𝜎

V∗
𝛾𝜏

 = U𝛼𝜐V
∗
𝛼𝜐 (4.10)

whereR𝛼𝜐 is the transfer matrix which constructs the row basisV𝛼𝜐 for the current level implicitly

using the row bases V𝛾𝜎 ,V𝛾𝜏 from the previous level. An analogous process is carried out for

Φ(𝛽,𝜐), after which we can discard the column bases U𝛾𝜎 and U𝛾𝜏 from the last level. We repeat

this computation for each block at each level ℓ = 1, . . . , 𝐿.

Let 𝑟𝜀 (𝛾, 𝜎) denote the 𝜀-rank of the block Φ(𝛾, 𝜎). Then each transfer matrix is of size

𝑟𝜀 (𝛼,𝜐) ×
(
𝑟𝜀 (𝛾, 𝜎) + 𝑟𝜀 (𝛾, 𝜏)

)
. If all complementary blocks have 𝜀-rank exactly by 𝑟 , then all

transfer matrices are 𝑟 × 2𝑟 . For a matrix Φ ∈ C𝑛×𝑚 with 𝑚 ≤ 𝑛, we store O(𝑚) transfer ma-

trices at each of the O(log𝑚) levels, along with column basis matrices at level 𝐿. This yields a

O
(
𝑟𝑛 + 𝑟 2𝑚 log𝑚

)
storage and application cost. However, depending on the rank structure of

Φ, the ranks of complementary blocks may grow with 𝑛 or 𝑚, and as a result, the storage and

application cost may exceed the quasilinear cost of the fixed-rank case. This is true for the MHT,

76



as we will see in Section 4.5.

We turn now to the cost of the necessary precomputations for the BA-MHT. The butterfly

factorization cost is dominated by the first level, where we must compute low-rank factoriza-

tions of O(𝑚) matrices, each of size 𝑛 × O(1). This leads to an O(𝑛𝑚) factorization cost. A

number of approaches have been proposed to reduce the cost of this precomputation, including

linear cost interpolative decompositions [26, 36, 94] and residual phase functions [21, 31]. Unfor-

tunately, these approaches rely on difficult-to-verify incoherence properties of the submatrices

of Φ, require the physical locations {𝒙 𝑗 }𝑛𝑗=1 to lie on specific tensor product grids, or necessitate

knowledge of a phase function𝜓 for which 𝐾 (𝝎, 𝒙) ≈ 𝑒𝑖𝜓 (𝝎,𝒙) . Thus none of these techniques are

directly applicable to the BA-MHT. Furthermore, computing𝑚 Laplace-Beltrami eigenfunctions

generally requires at least O(𝑛𝑚) operations, and is thus the bottleneck relative to the factor-

ization step in practice. Therefore, we do not make any attempt here to accelerate the butterfly

factorization step in the MHT.

Remark 4.1. By arranging the transfer matrices R𝛼𝜐 at each level into a matrix, the butterfly fac-

torization can be equivalently written as a product of O(log𝑛) sparse matrices each with O(𝑟 2𝑛)

entries. This can be a useful viewpoint for various computational tasks. However, we find the

sparsity structure of these factor matrices to be less intuitive for our purposes, and thus focus on

the tree-based construction given above.

4.3 Fiedler trees

In order to compute a butterfly factorization of the MHT, wemust first construct a row tree on

the spatial domainM and a column tree on the frequency domain [0, 𝜆𝑚]. Forming a binary tree

on the frequency interval is straightforward. However, building a suitable tree on themanifoldM

is more subtle. In some simple cases like the sphere, torus, or deformations thereof, one can use

an underlying two-dimensional parameterization of the surface to build a tree whose elements
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Algorithm 3: Butterfly factorization

1 ButterflyFactorization(Φ, 𝑇𝑥 , 𝑇𝜆):
2 for leaf node 𝜎 in 𝑇𝜆 do
3 U:𝜎V∗

:𝜎 = Φ(:, 𝜎)
4 end
5 for level ℓ = 1, . . . , 𝐿 − 1 do
6 for node 𝜎 at level ℓ of 𝑇𝜆 do
7 Let 𝜎 and 𝜏 be the children of 𝜐
8 for node 𝛾 at level 𝐿 − ℓ of 𝑇𝑥 do
9 Let 𝛼 and 𝛽 be the children of 𝛾

10
[
U𝛾𝜎 (𝛼, :) U𝛾𝜏 (𝛼, :)

]
= U𝛼𝜐R𝛼𝜐

11
[
U𝛾𝜎 (𝛽, :) U𝛾𝜏 (𝛽, :)

]
= U𝛽𝜐R𝛽𝜐

12 Free memory associated with U𝛾𝜎 and U𝛾𝜏

13 end
14 end
15 end

16 return

Row basis V:𝜎 for each leaf node 𝜎 in 𝑇𝜆
Transfer matrix R𝛼𝜐 for each block at levels ℓ = 1, . . . , 𝐿−1
Column basis U𝛼 : for each leaf node 𝛼 in 𝑇𝑥


at each level have approximately equal areas.

For general surfaces, one simple approach is to subdivide M according to an octree in the

ambient space. For simple convex domains this approach may be sufficient in practice. However,

it often results in octree boxes containing submanifolds of M which are close in the extrinsic

Euclidean metric but may be arbitrarily far apart in geodesic distance. As a result, eigenfunctions

𝜑𝑘 of similar orders 𝑘 within a given octree box may have highly dissimilar structures, reducing

compressibility and causing the block ranks within the butterfly factorization to grow unneces-

sarily quickly.

To avoid such issues, we instead use a Fiedler tree [11, 115], which respects the intrinsic ge-

ometry of M relevant to the MHT. The construction of a Fiedler tree takes advantage of two

essential observations. The first is that by the Courant Nodal Domain Theorem [23], the second

eigenfunction 𝜑2 of the Laplace-Beltrami operator divides M into exactly two nodal domains —
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one on which 𝜑2 ≤ 0 and one on which 𝜑2 > 0. If M is a manifold with boundary, then this fact

holds for any suitable choice of boundary conditions, e.g. Dirichlet, Neumann, or mixed. The

second observation is that partitioning a manifold according to the value of 𝜑2 provides an ap-

proximation to the cut ofM into submanifolds which minimizes the ratio of the length of the cut

to the volume of each of the resulting submanifolds [24, 37, 105]. In other words, 𝜑2 divides M

into two pieces with approximately equal surface areas and little connection between the pieces.

We then apply this reasoning recursively; we compute 𝜑2 on the original manifold, divide it into

two submanifolds according to the computed values of 𝜑2, then compute a new eigenfunction 𝜑2

on each of the submanifolds, divide each one into two new submanfiolds using the values of their

respective eigenfunctions 𝜑2, and so on. Repeating this partitioning process until O(1) points 𝒙 𝑗

lie in each submanifold yields a Fiedler tree onM.

Several technical choices must now be made. First, we must choose a boundary condition to

enforce in the eigenproblem on each submanifold. For this, we use a homogeneous Neumann

condition and solve


ΔM𝜑 = 𝜆𝜑, inM,

𝜕𝜑

𝜕𝑛
= 0 on 𝜕M .

(4.11)

Other choices of boundary condition are possible and will result in slightly different trees. Next,

we must determine how to partition M given 𝜑2. [11] uses a linear approximation to the level

set 𝜑2 = 0 on each triangular patch 𝑃 , introducing new cut cells into a linear finite element

discretization of M. However, because we require only a rough partitioning of M and wish to

remain agnostic to the surface discretization method, we forgo cut cells and instead subdivideM

according to the sign of the integral
∫
𝑃
𝜑2(𝒙) d𝒙 over each element 𝑃 . This approach is simple

to implement, and can be used regardless of whether the elements 𝑃 are a low- or high-order,

triangular or quadrilateral. IfM is instead defined in an implicit ormesh-freeway as the collection

of points {𝒙 𝑗 }𝑛𝑗=1, and the eigenfunctions are computed using a kernel-based approach as in the
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Algorithm 4: Construct Fiedler tree

1 FiedlerTree(M, {𝒙 𝑗 }𝑛𝑗=1):
2 if 𝑛 < min_size then
3 return {𝒙 𝑗 }𝑛𝑗=1
4 Compute second eigenfunction 𝜑2 of ΔM
5 if Discretization of M consists of patches 𝑃 then
6 M1 :=

{
𝑃 ∈ M :

∫
𝑃
𝜑2(𝒙) d𝒙 ≤ 0

}
7 else if Representation ofM is mesh-free then
8 M1 :=

{
1 ≤ 𝑗 ≤ 𝑛 : 𝜑2(𝒙 𝑗 ) ≤ 0

}
9 M2 := M \M1

10 𝑋1 :=
{
𝒙 𝑗 for 𝑗 = 1, . . . , 𝑛 : 𝒙 𝑗 ∈ M1

}
11 𝑋2 := {𝒙 𝑗 }𝑛𝑗=1 \ 𝑋1

12 return
{
FiedlerTree(M1, 𝑋1), FiedlerTree(M2, 𝑋2)

}
“Laplacian eigenmaps” paradigm [7, 8, 73], then one can simply partitionM by the sign of 𝜑2(𝒙 𝑗 )

at each point. Algorithm 4 gives pseudocode for the recursive construction of a Fiedler tree,

and Figure 4.3 illustrates the partitioning process on an example high-order quadrilateral mesh,

plotting the eigenfunctions 𝜑2 used on various submanifolds at each level.

4.4 The butterfly-accelerated manifold harmonic

transform

Having developed a tree structure on M, we now have all the necessary tools to apply the

butterfly factorization to the MHT. However, we note that applying Algorithm 3 directly requires

that we first compute column bases U:𝜎 for every leaf node 𝜎 in𝑇𝜆 . At this point in the algorithm,

the necessary working memory is O(𝑛𝑚) in general. As our objective is to compute a compressed

representation of Φ when the dense matrix may not fit in working memory, this step may be

infeasible.

In order to reduce the memory requirements of the algorithm so that the necessary memory
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Algorithm 2: Construct Fiedler tree

1 FiedlerTree(M, {xj}n
j=1):

2 if n < min size then
3 return {xj}n

j=1

4 Compute second eigenfunction '2 of �M
5 M1 :=

�
P 2 M :

R
P
'2(x) dx  0

 

6 M2 := M \ M1

7 X1 := {xj for j = 1, . . . , n : xj 2 M1}
8 X2 := {xj}n

j=1 \ X1

9 return
�
FiedlerTree(M1, X1), FiedlerTree(M2, X2)

 

Fig. 3: A subset of the nodes of a cut-cell-free Neumann Fiedler tree on the cow mesh, with
the second Neumann eigenfunction '2 plotted on each submanifold.

quadrilateral mesh, plotting the eigenfunctions '2 used on various submanifolds at
each level.

4. The butterfly-accelerated manifold harmonic transform. Having de-
veloped a tree structure on M, we can now apply the butterfly factorization to the
MHT. However, we note that applying Algorithm 1 directly requires that we first
compute column bases U:� for every leaf node � in T!. At this point in the algorithm,
the necessary working memory is O(nm) in general. As our objective is to compute a
compressed representation of � when the dense matrix may not fit in working memory,
this step may be infeasible.

In order to reduce the memory requirements of the algorithm so that the necessary
memory is bounded at all times by the size of the final compressed representation up
to a small constant factor, we reorganize the factorization process using a post-order
traversal of the nodes in T!. The post-order traversal begins at the left-most leaf node

Figure 4.3: A subset of the nodes of a cut-cell-free Neumann Fiedler tree on the cow mesh, with the
second Neumann eigenfunction 𝜑2 plotted on each submanifold.

is bounded at all times by the size of the final compressed representation up to a small constant

factor, we reorganize the factorization process using a post-order traversal of the nodes in 𝑇𝜆 as

suggested in [119]. The post-order traversal begins at the left-most leaf node and proceeds in

a “left, right, parent” fashion. We can thus compute a small number of Laplace-Beltrami eigen-

functions 𝜑𝑘 corresponding to a leaf node in the frequency tree 𝑇𝜆 , and compress this block of

eigenfunctions as much as possible before computing the next set of columns. Algorithm 5 and

Figure 4.4 provide pseudocode and a graphical representation for this streaming BA-MHT algo-

rithm.

4.5 Rank and complexity analysis

We now establish asymptotic storage and complexity results for our algorithm to illuminate

various aspects of the BA-MHT’s performance which will be observed in numerical examples
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Algorithm 5: Streaming butterfly factorization

1 StreamingButterflyFactorization(𝑘 → 𝝋𝑘 , 𝑇𝑥 , 𝑇𝜆):
2 for node 𝜐 in a post-order traversal of 𝑇𝜆 do
3 if 𝜐 is a leaf node then
4 Compute Φ(:, 𝜐)
5 U:𝜐V∗

:𝜐 = Φ(:, 𝜐)
6 else if 𝜐 is a node at level ℓ − 1 then
7 Let 𝜎 and 𝜏 be the children of 𝜐
8 for node 𝛾 at level 𝐿 − ℓ of 𝑇𝑥 do
9 Let 𝛼 and 𝛽 be the children of 𝛾

10
[
U𝛾𝜎 (𝛼, :) U𝛾𝜏 (𝛼, :)

]
= U𝛼𝜐R𝛼𝜐

11
[
U𝛾𝜎 (𝛽, :) U𝛾𝜏 (𝛽, :)

]
= U𝛽𝜐R𝛽𝜐

12 Free memory associated with U𝛾𝜎 and U𝛾𝜏

13 end
14 end

15 return

Row basis V:𝜎 for each leaf node 𝜎 in 𝑇𝜆
Transfer matrix R𝛼𝜐 for each block at levels ℓ = 1, . . . , 𝐿−1
Column basis U𝛼 : for each leaf node 𝛼 in 𝑇𝑥


and applications in the following sections. Analyzing the rank of blocks of the manifold har-

monic transform in the general case is challenging because the eigenfunctions and eigenvalues

are not known in closed form. However, for the flat torus M = [−𝜋, 𝜋]2, the manifold harmonic

transform is exactly the two-dimensional Fourier transform with eigenvalues 𝜆𝑘 = 𝑘21 + 𝑘22 and

eigenfunctions 𝜑𝑘 (𝒙) = 𝑒𝑖 (𝑘1𝑥1+𝑘2𝑥2) for 𝑘1, 𝑘2 ∈ Z. Therefore, we develop here explicit bounds

on the 𝜀-rank of blocks of the two-dimensional Fourier transform. We will see that these results

agree with numerical experiments on other manifolds, and we will thus conjecture that they

extend to the general case.

To begin, we require a simple bound which will be used extensively in the proofs that follow.

Lemma 4.1. Take 𝑘 ∈ Z with 𝑘 > 0 and 𝑥 ∈ R with 𝑥 > 0. Then we have

|𝐽𝑘 (𝑥) | ≤
(𝑥/2)𝑘
𝑘!

≤ 𝑒𝜉
(
𝑥

2𝜉

)𝑘
. (4.12)
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1

𝜆

𝒙

2 3 4

5 6 7 8

Figure 4.4: A schematic depiction of the streaming butterfly factorization. The nodes of the column
(frequency) tree are traversed using a post-order traversal. When leaf nodes are visited, new bands of
eigenvectors are streamed. When an internal node is visited, the partial factors corresponding to that
node’s children are merged and split. Eight steps of the algorithm are shown in sequence, with the block
boxes indicating the order of the steps. Note that the nodes in the row and column trees being visited at
each step are marked in the corresponding trees.

For any 𝜉 > 0. In particular, taking 𝜉 = 𝑒𝑥
2 gives

|𝐽𝑘 (𝑥) | ≤ 𝑒
𝑒𝑥
2 −𝑘 . (4.13)

Proof. The first inequality is [90, p. 10.14.4], and Stirling’s formula gives the second. □

Consider the Fourier kernel 𝐾 (𝝎, 𝒙) = 𝑒𝑖𝝎
⊤𝒙 in two dimensions. Given access to the two-

dimensional frequencies 𝝎, one could build a butterfly factorization for the two-dimensional

Fourier transform using quadtrees in space and frequency. The following theorem demonstrates

that the rank of the two-dimensional Fourier kernel from frequencies 𝝎 ∈ 𝐵𝑏 to points 𝒙 ∈ 𝐵𝑅 is

of size 𝑟𝜀 = O(𝑏2𝑅2), nd thus the 𝜀-ranks of all compressed blocks remain bounded by a fixed 𝑟 at

all levels, resulting in an O(𝑟 2𝑛 log𝑛) algorithm.

Theorem 4.2. The 𝜀-rank of the Fourier kernel 𝐾 (𝝎, 𝒙) = 𝑒𝑖𝝎⊤𝒙
for 𝝎 ∈ 𝐵𝑏 and 𝒙 ∈ 𝐵𝑅 is bounded
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by

𝑟𝜀 ≤
1
2
⌈
𝑒𝑏𝑅 + log 2 + log(𝜀−1)

⌉2
. (4.14)

Proof. Writing 𝝎 ↦→ (𝜌, 𝛼) and 𝒙 ↦→ (𝑟, 𝜃 ) in polar coordinates gives

𝑘 (𝝎, 𝒙) := 𝑒𝑖𝜌𝑟 cos(𝛼−𝜃 ) . (4.15)

Using [88, Lemma 3.2], we obtain

𝑘 (𝝎, 𝒙) =
∞∑︁
ℓ=0

𝑐ℓ 𝐽ℓ (𝜌𝑟 )
(
cos(ℓ𝛼) cos(ℓ𝜃 ) + sin(ℓ𝛼) sin(ℓ𝜃 )

)
(4.16)

where 𝑐0 := 1 and 𝑐ℓ := 2𝑖ℓ for all ℓ > 0. Applying [90, p. 10.23.2] then gives the expansion

𝑘 (𝝎, 𝒙) =
∞∑︁
ℓ=0

𝑐ℓ

(
cos(ℓ𝛼) cos(ℓ𝜃 ) + sin(ℓ𝛼) sin(ℓ𝜃 )

)
𝜌ℓ

∞∑︁
𝑘=0

(−1)𝑘 (𝜌2 − 1)𝑘 ( 𝑟2 )
𝑘

𝑘!
𝐽ℓ+𝑘 (𝑟 ), (4.17)

which is separable into products of terms involving (𝑟, 𝜃 ) and (𝜌, 𝛼) respectively. Assumewithout

loss of generality that 𝜌 > 1. Then using the fact that |𝐽𝑘 (𝑥) | ≤ 1
𝑘! (

𝑥
2 )
𝑘 , we have�����𝑐ℓ cos(ℓ𝛼) cos(ℓ𝜃 )𝜌ℓ (−1)𝑘 (𝜌2 − 1)𝑘 ( 𝑥2 )

𝑘

𝑘!
𝐽ℓ+𝑘 (𝑟 )

����� ≤ 2
𝑘!
𝜌ℓ (𝜌2 − 1)𝑘

(𝑟
2

)𝑘
|𝐽ℓ+𝑘 (𝑟 ) | . (4.18)

≤ 2
(ℓ + 𝑘)!𝑘!

(𝜌𝑟
2

) ℓ+2𝑘
, (4.19)

with a similar bound for the sine term. Applying Lemma 4.1 and the fact that 𝜌 ≤ 𝑏, we have

2
(ℓ + 𝑘)!𝑘!

(𝜌𝑟
2

) ℓ+2𝑘
≤ 2𝑒𝑒𝑏𝑅−ℓ−2𝑘 . (4.20)
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Assuring this expression is bounded by 𝜀, we obtain

ℓ + 2𝑘 < 𝑒𝑏𝑅 + log 2 + log(𝜀−1). (4.21)

Counting the number of integer pairs (𝑘, ℓ) satisfying the above, and taking into account that each

ℓ contributes two terms in (4.17) — one with cosines and one with sines — gives the result. □

However, in the case of the general MHT, no such two-dimensional frequency 𝝎 is well-

defined. Instead, we have access only to the linear ordering of eigenvalues 𝜆𝑘 of the Laplacian.

We now consider the two-dimensional Fourier transform as special case of the MHT, and study

the rank of the Fourier kernel from eigenvalues with
√
𝜆 := ∥𝜔 ∥ ∈ [𝑎, 𝑏] to points 𝒙 ∈ 𝐵𝑅 . This

corresponds to considering frequencies in the annulus 𝝎 ∈ 𝐴𝑏𝑎 := {𝝎 : 𝑎 ≤ ∥𝝎∥ ≤ 𝑏}.

One-dimensional intuition and the result of Theorem 4.2 that the 𝜀-rank of the Fourier kernel

from 𝝎 ∈ 𝐵𝑏 to 𝒙 ∈ 𝐵𝑅 scales like 𝑟𝜀 = O(vol(𝐵𝑏) vol(𝐵𝑅)) = O(𝑏2𝑅2) both suggest that for

𝝎 ∈ 𝐴𝑏𝑎 , we should have 𝑟𝜀 = O(vol(𝐴𝑏𝑎) vol(𝐵𝑅)) = O((𝑏2 − 𝑎2)𝑅2). In other words, that the

rank of the Fourier kernel should depend only on the phase space volume, i.e. the product of the

volumes of the physical and frequency domains. However, this turns out to be far from the case,

which we will see is the driving factor in the computational complexity of the MHT.

Consider first the case of ∥𝝎∥ = 𝑏. Then the Jacobi-Anger expansion gives the Fourier coef-

ficients of the Fourier kernel explicitly

𝐾 (𝝎, 𝒙) = 𝑒𝑖𝑏𝑟 cos(𝛼−𝜃 ) =
∞∑︁

𝑘=−∞
𝑖𝑘 𝐽𝑘 (𝑏𝑟 )𝑒𝑖𝑘 (𝛼−𝜃 ) . (4.22)

As |𝐽𝑘 (𝑏𝑅) | is O(1) for 𝑘 < 𝑏𝑅 and the Fourier bases are orthogonal in 𝐿2( [0, 2𝜋]), one cannot

generally hope to obtain an expansion of 𝐾 with 𝜀-rank less than 𝑏𝑅 which is valid for 𝝎 in any

domain containing the circle of radius 𝑏. In particular, this implies that the 𝜀-rank of the Fourier

kernel between an annulus 𝝎 ∈ 𝐴𝑏𝑎 and a disk 𝒙 ∈ 𝐵𝑅 must grow at least as fast as the outer
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radius 𝑏 of the annulus, even if the phase space volume is held constant.

Before providing a bound on the rank of the annulus-to-disk Fourier kernel, we derive an

explicit formula for the Chebyshev expansion coefficients of the Bessel function 𝐽𝑘 (𝜌𝑟 ) for 𝜌 in

any interval [𝑎, 𝑏] in terms of sums of products of Bessel functions. This expansion is central to

the proof that follows, and is of independent interest in other applications which require a local

approximation of the Bessel function 𝐽𝑘 .

Lemma 4.3. Take 𝑘 ∈ Z with 𝑘 ≥ 0. Then for all 𝑟 > 0 and 𝑎 ≤ 𝜌 ≤ 𝑏,

𝐽𝑘 (𝜌𝑟 ) =
𝑐𝑘0(𝑟 )

2
+

∞∑︁
ℓ=1

𝑐𝑘ℓ (𝑟 )𝑇ℓ
( 2
𝑏−𝑎 (𝜌 − 𝑎) − 1

)
(4.23)

𝑐𝑘ℓ (𝑟 ) =
∞∑︁
𝑞=0


𝑐
2𝑞
𝑘ℓ
(𝑟 ) ℓ even

𝑐
2𝑞+1
𝑘ℓ

(𝑟 ) ℓ odd


𝑐
𝑝

𝑘ℓ
(𝑟 ) = 2𝜂𝑝 𝐽 𝑝+ℓ

2

(
(𝑏−𝑎)𝑟

4

)
𝐽 𝑝−ℓ

2

(
(𝑏−𝑎)𝑟

4

) [
𝐽𝑘−𝑝

(
(𝑏+𝑎)𝑟

2

)
+ (−1)𝑝 𝐽𝑘+𝑝

(
(𝑏+𝑎)𝑟

2

) ]
where 𝜂0 := 1

2 and 𝜂𝑝 := 1 for all 𝑝 ≠ 0.

Proof. Let 𝜌 =
(𝑏−𝑎)
2 (cos𝜏 + 1) + 𝑎. The Chebyshev coefficients are then given by

𝑐𝑘ℓ =
2
𝜋

∫ 𝜋

0
𝐽𝑘

(
(𝑏−𝑎)𝑟

2 cos𝜏 + (𝑏+𝑎)𝑟
2

)
cos(ℓ𝜏) 𝑑𝜏 (4.24)

=
2
𝜋

∫ 𝜋

0

[ ∞∑︁
𝑝=−∞

𝐽𝑝

(
(𝑏−𝑎)𝑟

2 cos𝜏
)
𝐽𝑘−𝑝

(
(𝑏+𝑎)𝑟

2

)]
cos(ℓ𝜏) 𝑑𝜏 (4.25)

where we have applied the Neumann addition formula [90, p. 10.23.2]. Exchanging the order of

integration and summation, we obtain integrals of the form

∫ 𝜋

0
𝐽𝑝

(
(𝑏−𝑎)𝑟

2 cos𝜏
)
cos(ℓ𝜏) 𝑑𝜏 =


𝜋 𝐽 𝑝+ℓ

2

(
(𝑏−𝑎)𝑟

4

)
𝐽 𝑝−ℓ

2

(
(𝑏−𝑎)𝑟

4

)
𝑝 + ℓ is even

0 otherwise.
(4.26)
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The above equality follows by noting that the integrand is symmetric about 𝜋2 when 𝑝 + ℓ is even,

in which case we apply [90, p. 10.22.13]. If 𝑝 + ℓ is odd, the integrand is antisymmetric about 𝜋2

and thus the integral is zero. Plugging this in to (4.25) gives the result. □

We can now use this formula for the Chebyshev coefficients of the Bessel function to bound

the rank of the Bessel kernel 𝐾𝑘 (𝜌, 𝑟 ) = 𝐽𝑘 (𝜌𝑟 ).

Lemma 4.4. Take 𝑘 ∈ Z. The 𝜀-rank of 𝐾𝑘 (𝜌, 𝑟 ) := 𝐽𝑘 (𝜌𝑟 ) for 𝑎 ≤ 𝜌 ≤ 𝑏 and 0 ≤ 𝑟 ≤ 𝑅 is bounded

by

𝑟𝜀 ≤

2𝜉 + 2 log 4 + log(𝜀−2)

log
(

8𝜉
(𝑏−𝑎)𝑅

)  (4.27)

for any 𝜉 >
(𝑏−𝑎)𝑅

8 .

Proof. Assume ℓ is even. Applying Lemma 4.3, bounding the absolute values of the Bessel func-

tions of orders 𝑝−ℓ2 , 𝑘 −𝑝 , and 𝑘 +𝑝 by one, and applying Lemma 4.1 to the remaining term yields

the bound

|𝑐𝑘ℓ (𝑟 ) | ≤ 4
∞∑︁
𝑞=0

����𝐽𝑞+ ℓ
2

(
(𝑏 − 𝑎)𝑟

4

)���� (4.28)

≤ 4
∞∑︁
𝑞=0

𝑒𝜉
(
(𝑏 − 𝑎)𝑟

8𝜉

)𝑞+ ℓ
2

(4.29)

=

4𝑒𝜉
(
(𝑏−𝑎)𝑟
8𝜉

) ℓ
2

1 − (𝑏−𝑎)𝑟
8𝜉

, (4.30)

which is less than 𝜀 for all

ℓ

2
>

𝜉 − log
(
1 − (𝑏−𝑎)𝑟

8𝜉

)
+ log 4 + log(𝜀−1)

log
(

8𝜉
(𝑏−𝑎)𝑟

) (4.31)
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for all 𝜉 > (𝑏−𝑎)𝑟
8 . Neglecting the second term in the numerator gives the result. □

We are ready to state and prove our desired rank bound on the annulus-to-disk Fourier trans-

form. In essence, we show that the Fourier kernel mapping frequencies 𝝎 ∈ 𝐴𝑏𝑎 to points 𝒙 ∈ 𝐵𝑅

has 𝜀-rank O(𝑏𝑅) up to log factors in (𝑏 − 𝑎)𝑅 if this quantity is sufficiently small.

Theorem 4.5. The 𝜀-rank of the Fourier kernel 𝐾 (𝝎, 𝒙) := 𝑒𝑖𝝎⊤𝒙
for 𝑎 ≤ ∥𝝎∥ ≤ 𝑏 and 𝒙 ∈ 𝐵𝑅 is

bounded by

𝑟𝜀 ≤

5 + log(𝜀−2)

log
(

8
(𝑏−𝑎)𝑅

)  ·
⌈𝑒
2
𝑏𝑅 + log(𝜀−1)

⌉
(4.32)

for any (𝑏 − 𝑎)𝑅 < 8.

Proof. We first expand 𝐾 in a Fourier series in 𝛼 − 𝜃 , giving

𝐾 (𝝎, 𝒙) = 𝑒𝑖𝜌𝑟 cos(𝛼−𝜃 ) =
∞∑︁

𝑘=−∞
𝑖𝑘 𝐽𝑘 (𝜌𝑟 )𝑒𝑖𝑘 (𝛼−𝜃 ) . (4.33)

Applying Lemma 4.3 then yields

𝐾 (𝝎, 𝒙) =
∞∑︁

𝑘=−∞

∞∑︁
ℓ=0

𝑖𝑘𝑐𝑘ℓ (𝑟 )𝑇ℓ
( 2
𝑏−𝑎 (𝜌 − 𝑎) − 1

)
𝑒𝑖𝑘 (𝛼−𝜃 ) . (4.34)

Applying Lemma 4.1 to 𝐽𝑘 (𝜌𝑟 ) gives

|𝑐𝑘ℓ (𝑟 ) | ≤ |𝐽𝑘 (𝜌𝑟 ) | ≤ 𝑒
𝑒𝜌𝑟

2 −𝑘 , (4.35)

and thus |𝑐𝑘ℓ (𝑟 ) | < 𝜀 for all

𝑘 >
𝑒𝜌𝑟

2
+ log(𝜀−1). (4.36)

88



√
𝜌𝑘−1

√
𝜌𝑘𝜔1

𝜔2

𝜌𝑘−1 𝜌𝑘

0 𝜆

𝒄 𝑗
𝑅

𝜋𝑥1

𝑥2∥𝝎∥2 = 𝜆

Φ(𝐽 , 𝐾)

Figure 4.5: Diagram of the two-dimensional Fourier transform as a MHT. The annulus 𝐴
√
𝜌𝑘√
𝜌𝑘−1

(left) con-
tains eigenfrequencies 𝝎 = [𝑘1, 𝑘2] for 𝑘1, 𝑘2 ∈ Z, denoted by black dots. These eigenfrequencies are
mapped by ∥𝝎∥2 = 𝜆 to the corresponding eigenvalues 𝜆𝑘 of Δ[−𝜋,𝜋 ]2 (center). Each block Φ(𝐽 , 𝐾) of the
MHT maps coefficients of eigenfunctions with 𝜆 ∈ [𝜌𝑘−1, 𝜌𝑘 ] to values in a disk 𝒙 ∈ 𝐵𝑅 (𝒄 𝑗 ).

Combining this with Lemma 4.4 for 𝜉 = 1, using the fact that 2 + 2 log 4 < 5, and counting the

number of pairs (𝑘, ℓ) for which |𝑐𝑘ℓ (𝑟 ) | may exceed 𝜀 gives the result. □

We now employ this rank bound for each compressed block of the BA-MHT to analyze the

complexity of our algorithm applied to the flat torus. Figure 4.5 shows a diagram of the two-

dimensional Fourier transform as a MHT and its relation to the annulus-to-disk Fourier kernel.

The following result agrees with the numerical experiments of Section 4.6, but we will neglect

certain logarithmic terms and will assume — as we observe in practice — that the storage and

application complexity of the MHT is dominated by the middle level ℓ = 𝐿
2 of the butterfly factor-

ization. Therefore, the following sketch gives the necessary intuition bridging the above theoret-

ical results to the numerical experiments of the next section, but lacks the formal details required

to constitute a complete proof. A rigorous version of this result will appear in an forthcoming

publication.

Claim 4.6. Let M = [−𝜋, 𝜋]2. The BA-MHT mapping 𝑚 coefficients to a linear combination of

eigenfunctions at 𝑛 points is O(𝑛 +𝑚3/2) complexity to store and apply.

Proof sketch. Assume𝑚 ≤ 𝑛. In addition, assume that𝑚 = 4𝐿 for ease of notation. At each level

ℓ = 0, . . . , 𝐿 and each box index 𝑘 = 1, . . . , 4ℓ and 𝑗 = 1, . . . , 4𝐿−ℓ , we apply a transfer matrix
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corresponding to (𝝎, 𝒙) ∈ 𝐴
√
𝜌𝑘√
𝜌𝑘−1

× 𝐵√2𝜋/2ℓ (𝒄 𝑗 ), where 𝜌𝑘 := 𝑘𝜆𝑚/4𝐿−ℓ is the upper boundary of

box 𝑘 on level ℓ of a 4-ary tree on [0, 𝜆𝑚], and 𝒄 𝑗 is the center of box 𝑗 on level 𝐿 − ℓ of a quadtree

on [−𝜋, 𝜋]2.

Take 𝑎 =
√
𝜌𝑘−1, 𝑏 =

√
𝜌𝑘 , and 𝑅 =

√
2𝜋/2ℓ . In this proof sketch, we neglect the term involving

log
(
(𝑏 − 𝑎)𝑅

)
in Theorem 4.5. Combining this theorem and the fact that Weyl’s law [23] gives

𝜆𝑚 ∼𝑚/𝜋 , we see that the 𝜀-rank of block ( 𝑗, 𝑘) at level ℓ is of size

𝑟𝜀 (ℓ, 𝑗, 𝑘) = O
(√︂

𝑘𝜆𝑚

4𝐿−ℓ
1
2ℓ

)
= O(

√
𝑘) (4.37)

At the same time, byWeyl’s law the number of eigenvalues in the interval [𝜌𝑘−1, 𝜌𝑘], and therefore

an upper bound on the size and rank of the corresponding MHT block is

𝑟𝜀 (ℓ, 𝑗, 𝑘) = O
(
𝑘𝜆𝑚

4𝐿−ℓ
− (𝑘 − 1)𝜆𝑚

4𝐿−ℓ

)
= O(4ℓ) (4.38)

Therefore, in early levels of the factorization there are very few eigenvalues in each interval

[𝜌𝑘−1, 𝜌𝑘] and thus 𝑟𝜀 is bounded by O(4ℓ) for each block independent of 𝑘 , despite the fact that

the continuous rank of the corresponding annulus-to-disk Fourier kernel may be much larger. In

contrast, in later levels the number of eigenvalues in each interval [𝜌𝑘−1, 𝜌𝑘] is larger than the

O(
√
𝑘) continuous rank of the Fourier kernel, and thus compression occurs.

Let 𝑝 𝑗 denote the parent of block 𝑗 at level ℓ in the space tree, and let 𝑐𝑘 denote a child of block

𝑘 in the frequency tree. For levels ℓ = 0, . . . , 𝐿 − 1, we store and apply transfer matrices which

map the row bases at level ℓ to row bases at level ℓ + 1, resulting in a cost of

𝐿−1∑︁
ℓ=0

4ℓ∑︁
𝑗=1

4𝐿−ℓ∑︁
𝑘=1

O
(
𝑟𝜀 (ℓ, 𝑝 𝑗 , 𝑐𝑘) · 𝑟𝜀 (ℓ + 1, 𝑗, 𝑘)

)
. (4.39)

The two numerical ranks appearing above are within a factor of four of each other because even

if no compression occurs, moving one level up the quadtree can at most quadruple the size of
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the basis. Empirically, the transition between O(4ℓ) and O(
√
𝑘) ranks occurs at the middle level

ℓ = 𝐿
2 . This remains to be rigorously established using Theorem 4.5. If this is taken for granted

for the purpose of this proof sketch, however, then the complexity is dominated by the middle

level, where 𝑟𝜀 (ℓ, 𝑝 𝑗 , 𝑐𝑘) and 𝑟𝜀 (ℓ + 1, 𝑗, 𝑘) are both O(
√
𝑘). This gives

√
𝑚∑︁
𝑗=1

√
𝑚∑︁

𝑘=1
O(𝑘) = O(𝑚3/2). (4.40)

All that remains is to determine the complexity of storing and applying the last level, where

compressed blocks are mapped to values at point in physical space. Let 𝑛 𝑗 be the number of

points in box 𝑗 on the leaf level 𝐿 of a quadtree on [−𝜋, 𝜋]2. At this level ℓ = 𝐿, we store and

apply column basis matrices for each block row, yielding a cost of

𝑚∑︁
𝑗=1

O
(
𝑛 𝑗 · 𝑟𝜀 (𝐿, 𝑗, 1)

)
=

𝑚∑︁
𝑗=1

O(𝑛 𝑗 ) = O(𝑛) (4.41)

This gives the result. □

In common application scenarios, one typically increases the number of desired eigenfunc-

tions𝑚 proportionally with the number of physical points 𝑛. In the case of the Fourier transform

this corresponds to keeping the number of points per wavelength constant. Similar considera-

tions must be made if the eigenfunctions 𝜑𝑘 are computed numerically in order to assure their

sufficient accuracy. The following simple corollary treats this natural scenario.

Corollary 4.7. Let M = [−𝜋, 𝜋]2. For𝑚 = O(𝑛), the BA-MHT is O(𝑛3/2) complexity to store and

apply.

We will see in the following section that the BA-MHT is largely geometry-agnostic, perform-

ing similarly on the flat torus, the sphere, and more generic compact manifolds. Thus we make

the following conjecture generalizing Claim 4.6 to general manifoldsM.
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Conjecture 4.8. The BA-MHT is O
(
𝑛 +𝑚 𝑑+1

2
)
to store and apply on any compact 𝑑-manifold M

for 𝑑 ≥ 2.

Note that the eigenfunctions of the Laplacian on any 1-manifold are 𝑒𝑖𝑘𝑠 where 𝑠 is arclength.

Thus the BA-MHT is exactly a butterfly-based NUFFT [75, 89], which has O(𝑛 +𝑚 log𝑚) com-

plexity to store and apply.

4.6 Numerical experiments

We now provide a number of numerical experiments to demonstrate the scalability and appli-

cability of our algorithm. We begin by testing the butterfly compression properties of the MHT

on various manifolds. First, we consider the sphere. In this case, the Laplace-Beltrami eigenfunc-

tions are the spherical harmonics 𝜑𝑘 (𝒙) = 𝑌 𝑝ℓ (𝒙) with corresponding eigenvalues 𝜆𝑘 = ℓ (ℓ + 1).

Therefore, we can evaluate arbitrary entries of Φ directly using existing numerical libraries for

spherical harmonics, and can avoid discretizing the sphere and numerically computing 𝜑𝑘 . We

choose our spatial locations {𝒙 𝑗 }𝑛𝑗=1 uniformly at random on the surface of the sphere, and use

the BA-MHT to perform a nonuniform spherical harmonic transform [9, 69].

Next, we consider a deformed torus. As this manifold does not have known closed-form

eigenfunctions, we must compute 𝜑𝑘 numerically. For this purpose we choose our spatial lo-

cations {𝒙 𝑗 }𝑛𝑗=1 to be nodes of a high-order spectral collocation scheme [38] which we use to

discretize the Laplace-Beltrami operator. We then employ a Krylov eigensolver [113] to compute

blocks of eigenfunctions. On both the sphere and the deformed torus, for various 𝑛 we compute

and compress 𝑚 = ⌈𝑛/32⌉ eigenfunctions using the BA-MHT. Figure 4.6 displays three of the

highest frequency eigenfunctions on the largest tested mesh of the deformed torus. Figure 4.7

illustrates O(𝑛3/2) scaling for the memory required to store the BA-MHT on both manifolds, just

as we expect from Corollary 4.7. Relative to the O(𝑛2) cost of storing the dense matrix, we see

that the BA-MHT yields a factor of ∼50 reduction in memory for 𝑛 ≈ 106 on the sphere, and a fac-
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Figure 4.6: Three of the highest frequency Laplace-Beltrami eigenfunctions computed on the deformed
torus with 𝑛 = 51,200 spectral collocation nodes and𝑚 = ⌈𝑛/32⌉ = 1,600 eigenfunctions.

𝑛 𝑛

Figure 4.7: Scaling of MHT on the sphere (left) and on the deformed torus (right) with tolerance 𝜀 = 10−3
and𝑚 = ⌈𝑛/32⌉.

tor of ∼10 reduction for 𝑛 ≈ 50,000 on the deformed torus. Recall that the complexity of storing

and applying the MHT are asymptotically equivalent because every stored transfer matrix must

be applied to a vector once, and thus this memory scaling is also a proxy for matvec runtime

scaling.

4.6.1 Gaussian random fields on manifolds

We now return to the motivating context of GRFs onmanifolds. Given a spectral density func-

tion 𝑆𝜽 (𝜆), one can generate approximate samples from the corresponding process by truncating
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(a) 𝑆 (𝜆) = (𝛽 − 𝜆)−𝜈−1
𝛽 = 10, 𝜈 = 3

(b) 𝑆 (𝜆) = (𝛽 − 𝜆)−𝜈−1
𝛽 = 20, 𝜈 = 1

(c) 𝑆 (𝜆) = 𝑒−|𝜆−𝜆0 |2/𝜂
𝜆0 = 80, 𝜂 = 10

Figure 4.8: Samples fromGRFs forMatérn spectral densities (a)-(b), and for a random surface wavemodel
(c) on deformed torus.

the Karhunen-Loève expansion

𝑍 (𝒙 𝑗 ) =
∞∑︁
𝑘=1

√︁
𝑆𝜽 (𝜆𝑘)𝑍𝑘𝜑𝑘 (𝒙 𝑗 ) for 𝑗 = 1, . . . , 𝑛, 𝑍𝑘

i.i.d.∼ 𝑁 (0, 1). (4.42)

This is precisely aMHT, and thus the BA-MHT can be applied directly to accelerate sampling from

these processes. Figure 4.8 shows samples drawn for various GRF models on the deformed torus.

As one expects from global spectral methods, this approach is best suited to smooth randomfields.

For rough random fields with highly localized covariance functions, FEM-based approaches [14,

70] which use approximately local bases will likely be more performant. A thorough numerical

comparison of these two approaches remains for future work.

4.7 Discussion

In this chapter, we presented a butterfly-accelerated manifold harmonic transform for rapidly

computing linear combinations of Laplace-Beltrami eigenfunctions on arbitrary compact mani-

folds. We present empirical evidence that our algorithm requires O(𝑛 +𝑚3/2) memory and time

to map𝑚 coefficients to 𝑛 point values on any compact 2-manifold in R3, and conjecture that the

complexity is O(𝑛 +𝑚 𝑑+1
2 ) for general compact 𝑑-manifolds. We provide bounds on the rank of

the Fourier transform between an annulus and a disk in two dimensions, which forms the basis
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of a proof for the observed asymptotic complexity in the special case ofM = [−𝜋, 𝜋]2.

There remain several interesting directions which are the subject of ongoing and future work.

First, there exist a number of applications to which the BA-MHT can be directly applied, in-

cluding spectral methods for surface PDEs [35], geometry processing [120], and kernel learn-

ing [8]. For these applications, generalizations of this work to higher dimensions and to mani-

folds with boundary must be considered. We believe these cases can be treated in a straightfor-

ward way using our algorithm. In addition, methods for reducing the eigenfunction computation

and butterfly factorization costs remain of significant practical interest, as both these precom-

putations require O(𝑛𝑚) time in general. Of immediate interest are multiresolution schemes

in which low-frequency eigenfunctions are computed on coarser discretizations, and multiscale

approaches [10] in which the global eigenproblem is subdivided into local ones.
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5 | Conclusion

In this dissertation, we have introduced three numerical methods which facilitate efficient

modeling of Gaussian random fields directly from their spectral densities in three different geo-

metric settings: the real line, higher-dimensional Euclidean space, and compact manifolds. Given

a spectral density 𝑆𝜽 , Chapters 2 and 3 each present one of the necessary components for rapid

evaluation of the corresponding stationary covariance function 𝐾𝜽 (𝒓 𝑗 ) at a large number of dis-

tances 𝑗 = 1, . . . , 𝑛 in R𝑑 . Efforts are underway to combine these ideas, utilizing the nonuniform

fast Hankel transform of Chapter 3 to evaluate panel integrals within the adaptive integration

framework of Chapter 2 for applications in 𝑑 ≥ 2. Integrating these algorithms with a convolu-

tional method for specifying nonstationary GRFs [93] and the Vecchia approximation [112] for

rapid maximum likelihood estimation would facilitate scalable inference for the types of com-

plex, large scale, and highly nonstationary data found in spatiotemporal statistics applications.

We look forward to pursuing these highly flexible spectral modeling possibilities.

We pivot away from entry evaluation schemes and towards “Fourier feature”-type methods in

Chapter 4, presenting an accelerated manifold harmonic transform for rapidly computing linear

combinations of Laplace-Beltrami eigenfunctions on compact manifolds M. These eigenfunc-

tions must be numerically precomputed in general, which is the computational bottleneck in

practice. Therefore, various multiscale methods of accelerating this precomputation are being

explored. In addition, we remain particularly interested in applications to smooth Gaussian ran-

dom fields, to graphics [120], and to kernel learning and forecasting [8, 46]. In these cases, only

96



relatively few eigenfunctions (e.g. hundreds to tens of thousands) may need be computed in order

to accurately capture the relevant phenomena, and thus our algorithm can be efficiently applied

without being limited by its precomputation cost.
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